Workplace interventions

with respect to risk management measures & their impact on exposure levels

to hazardous substances - literature review

Susann Wothe

Federal Institute for Occupational Safety and Health (BAuA), Unit 4.1 Exposure Scenarios, Dortmund, Germany

Background and Aims

- Workplace interventions: Important role in supporting and complementing scientific validation of assessment of effectiveness of risk management measures (RMMs) implemented to reduce occupational exposure to hazardous substances
- Control banding tools (CBT): Easy approach to evaluate worker exposure and to identify RMMs
- Knowledge of how expected reduction factors assumed by CBT compare to effectiveness of specific, implemented RMMs observed in field studies essential to ensure appropriate RMM recommendation by CBT → protection of workers

We review a collection of published intervention studies comparing observed with CBT-predicted exposure changes.

<u>Methods</u>

Intervention studies published in English from 1999 up to January 2017 were considered for inclusion. The selection was based on a systematic search of Pubmed.

Workplace interventions were defined as programmes aimed at reducing occupational exposure or where reductions occurred as a side effect, e.g. due to changes in the production process.

Where applicable, observed reductions in exposure were compared with predicted or anticipated exposure changes according to reduction factors and their estimated relative effectiveness for RMMs according to a semi-quantitative CBT, the COSHH Essentials e-tool. The work presented here gives an overview of a selection of 11 out of a total of 50 most relevant, published studies included in this review.

	nvestigator	Intervention(s)	Study	Exposure			COSHH		
			period	to	Exposure assessment by	Main findings	Essentials control approach & type	Predicted exposure reduction factor [x-fold]	Observed reduction factor [x-fold]
Metal industry	2009	Copper-beryllium alloy processing plant, U.S.: Targeted engineering controls etc. btw. 2000: 2007: (i) 2002: Wire annealing/pickling process enclosed (restricted access zone (RAZ)), put under negative pressure		Airborne Be	Survey to identify high-risk processes \rightarrow 2000-2007 implementation phase	Rod and wire processes: highest air concentrations for all study periods → post-intervention: 1by ~ 95 % (limited sample size)	2, 3	10-100	~ 20
	Meeker <i>et al.</i> 2007	commercially available portable LEV	2006 (?)	Mn; TPs	days from 2 pipefitters	Field setting: LEV (compared to no LEV): GM ↓53% in Mn exposure; ↓ 10% in TPs	2	10	Mn: 2; TPs: 1.1
		(experimental and field setting)			Experimental: semi-enclosed booth at training facility; breathing zone samples outside welding hood	Experimental setting: GM $\downarrow 75\%$ in Mn exposure; \downarrow 60% in TPs			Mn: 4; TPs: 2.5
	Meeker <i>et al.</i> 2010	 experimental & field setting (boilermakers & pipefitters), U.S., Canada: Effectiveness of portable LEV 	2007 - 2008		2 field surveys: full-shift breathing zone samples of welding during power plant overhauls		2	10	1.67
truction					Experimental: semienclosed booth at a pipefitter training facility; breathing zone samples outside welding hood	Experimental setting: GM ↓ 55 % Cr (VI)			2.2
cons	Flynn & Susi 2010	Welders' datasets, U.S., U.K., Canada: Influence of ventilation, degree of	1973 - 2008	including Mn,	for Construction Research and Training (CPWR),	General: ↑ exposure levels associated with ↑ degrees of confinement → work environment a driver of exposure			
ng in		confinement, sampler location		iron, TPs		TWI data: LEV (compared to no LEV): mean TPs: ↓35%, iron:↓41%, Mn:↓31%	2	10	TP: 1.5; iron: 1.7; Mn: 1.45
Weld						CPWR data: (i) ironworkers (mechanical vs. natural ventilation):↓ 72% total fume exposure; (ii) pipefitters (mechanical and/or LEV vs. natural): ↓20% TPs & ↓12% Mn; (iii) boilermakers: mixed results	2	10	(i) total fume: 3.6; (ii) TPs: 1.25; MN: 1.14
	2014	WELDOX study Germany: Improvements of exhaust ventilation and respiratory protection during flux-cored arc welding of stainless steel			243 welders from 23 companies: breathing zone & stationary sampling, post-shift: spot urine & blood	Lespirable particles by ~ 88% Lairborne metal compounds: Mn: 98%	2,4	≥ 10	Particles: 8.3 Mn: 50
						↓Cr: 97%			Cr: 33
						↓Ni: 96%; most striking ↓ inside helmets with purified air supply; ↓urinary metal & mean Mn blood concentration			Ni: 25
	Nij et al. 2002	Construction industry, Netherlands: Control measures to 1 guartz dust exposure : LEV,	1998 - 1999	Respirable dust & quartz	Full-shift (n = 61) & short-term measurements & questionnaire (n=1335 workers) → mixed effect	Short-term% dust reduction: wet dust suppression or LEV: >70% to >99%	2, 4	≥ 10	Short-term: LEV or wet suppression: 3.3 - >90
		wet suppression, PPE		dust	model	Controls not very strongly associated with full-shift estimates; +ve association btw. some controls and exposure levels			Full-shift: (i) natural ventilation: dust: 1.5; quartz: 1.4 (ii) LEV in tunnel(not significant): dust:
									0.8 (iii) P3 respirator: dust: no association; quartz: 0.2
tion	Flanagan <i>et al.</i> 2003	9 large construction sites, U.S.: Control measures on silica dust exposure on 8 dust- producing construction tasks	2000 - 2001	Respirable dust	Task with vs. task without controls; 42 on-site days per site	Surface grinding inside (GM): (i) Box fan: ↓ 57%; (ii) Vacuum/shroud: ↓ 71%	2	10	(i) Box fan: 2.3;(ii) Vacuum/shroud: 3.4
truc						Floor sanding inside: (i) Box fan: ↓ 50%; Demolition inside: (i) Ducted fan dilution:↑ 6%			2 0.94
						Demonstron inside: (i) Ducted fan dilution:↑ 6% Clean-up inside: (i) Sweeping: ↑ 25%, (ii) Box fan: ↑ 17%; (iii) Ducted fan dilution: ↑ 73%			0.94 (i) Sweeping: 0.8; (ii) Box fan: 0.85; (iii) Ducted fan: 0.57
						Surface grinding outside (GM): (i) LEV: ↓70%			3.3
	Croteau <i>et al.</i> 2004	6 commercial construction sites, Seattle, WA: Commercially available LEV system (ventilation shroud) during concrete surface grinding by cement masons	2001 - 2002	Respirable dust & crystalline silica	28 paired personal samples (with & without LEV)	LEV: 1 GM respirable dust exposure of 92%; crystalline silica of 86.4%	2	10	Dust: 12.5 Silica: 7.4
	Deurssen et al. 2015	Multidimensional intervention to ↓quartz	2011 - 2012	Quartz	Randomized controlled trial (4 control, 4 intervention group); Bayesian hierarchical models	Substantial overall ↓ in quartz exposure baseline vs. follow-up: 73% in intervention vs. 40% in control group; Intervention group:	2	10	3.7
		exposure (engineering: LEV and/or water suppression techniques), organisational, behavioural)				(i) Concrete driller: 155% (ii) Demolisher: 183%			2.2 5.9 5
**	Lazovich et al.	Minnesota Wood Dust Study, U.S.:	1997 - 1999	Wood dust	Baseline vs. follow-up (1 vr later), intervention vs.	 (iii) Tuck pointer: ↓80% Overall median ↓ dust concentrations intervention group: ↓ 19.8%; 	2.4	≥ 10	5
Wood dus	2002	48 small woodworking businesses: Multidimensional intervention(engineering: LEV and/or other dust controls), organisational, behavioural)			control group: Work practices survey, personal sampling & task recording; Mixed effects models	controls: ↓ 10.4%	,		
	Williams Ischer <i>et al.</i> 2017	2 broiler chicken production houses, Mississippi State, U.S. (House 1: sprinkler cooling system to deliver water mist; house 2: untreated control)	Winter of 2015 (Jan to March)	Inhalable dust; ammonia	Daily stationary measurements (1 production cycle of flock of chickens (63 days))	GM dust and ammonia: intervention house not statistically different to control; intervention house: dust \downarrow 11%; both houses conc. above recommended limits \rightarrow still need for RPE	2	10	1.12

Discussion

- Methods and findings varied considerably
 - \rightarrow limit scope to directly compare
 - (i) results from different studies and(ii) effectiveness of different interventions
- Overall: Majority of interventions successful at reducing exposure levels
- BUT: Preliminary results of comparison of observed vs. CBT predicted changes indicate: Across different sectors assumed CBT reduction factors overestimate efficacy of individual control approaches and associated classes of RMMs.

Conclusions

- Decreases in workplace exposure levels followed a variety of interventions in a variety of industries → benefits of implementing RMMs
- BUT at this point:
 - (i) no clear tendency regarding best choice of (classes of) RMMs
 - (ii) no specific recommendations for workplace risk assessment possible
- Preliminary results indicate: Efficacy of classes of RMMs called into question

Contact Information
Susann Wothe

Unit 4.1 Exposure Scenarios BAuA - Federal Institute for Occupational Safety and Health 44149 Dortmund, Germany Wothe.Susann@baua.bund.de

aua

Federal Institute for Occupational

Safety and Health

