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Nanotechnology risk management strategies and environmental regulations continue to rely on hazard and expo-
sure assessment protocols developed for bulk materials, including larger size particles, while commercial applica-
tion of nanomaterials (NMs) increases. In order to support and corroborate risk assessment of NMs for workers,
consumers, and the environment it is crucial to establish the impact of biopersistence of NMs at realistic doses. In
the future, such data will allow amore refined categorization of NMs. Despitemany experiments on NM character-
ization and numerous in vitro and in vivo studies, several questions remain unanswered including the influence of
biopersistence on the toxicity of NMs. It is unclear which criteria to apply to characterize a NM as biopersistent. De-
tection and quantification of NMs, especially determination of their state, i.e., dissolution, aggregation, and agglom-
eration within biological matrices and other environments are still challenging tasks; moreover mechanisms of
nanoparticle (NP) translocation and persistence remain critical gaps. This review summarizes the current under-
standing of NMbiokinetics focusing on determinants of biopersistence. Thorough particle characterization in differ-
ent exposure scenarios and biological matrices requires use of suitable analytical methods and is a prerequisite to
understand biopersistence and for the development of appropriate dosimetry. Analytical tools that potentially
can facilitate elucidation of key NM characteristics, such as ion beammicroscopy (IBM) and time-of-flight second-
ary ion mass spectrometry (ToF-SIMS), are discussed in relation to their potential to advance the understanding of
biopersistentNMkinetics.We conclude that amajor requirement for future nanosafety research is the development
and application of analytical tools to characterize NPs in different exposure scenarios and biological matrices.
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1. Introduction

The growing production and use of nanomaterials (NMs) in diverse
industrial processes, construction, and medical and consumer products
is resulting in increasing exposure of humans and the environment.
Humans encounter NMs from many sources and exposure routes, in-
cluding ingestion of food (Szakal et al., 2014), direct dermal contact
through consumer products (Gulson et al., 2015; Vance et al., 2015),
and by inhalation of airborne NMs (Donaldson and Seaton, 2012). Envi-
ronmental exposure on the other hand derives mostly from material
aging and waste (Mitrano et al., 2015; Neale et al., 2013). Detecting
NMs and understanding their kinetics and transformation are of para-
mount importance to assess their potential hazards and risks for
humans and the environment.With respect to risk assessments, knowl-
edge about the influence of biopersistence on the biokinetics and envi-
ronmental fate of NMs is required for establishing meaningful
categorization approaches.

With regard to human exposure, inhalation is considered the most
relevant route for consumers and workers alike. Nano-sized respirable
particles will access the alveoli, the location of gas exchange and gener-
ally the most vulnerable part of the lungs. A small fraction of NMs may
cross biological barriers, such as the air-blood barrier (ABB) of the lung.
Translocation of NMs was shown to be dependent on material and ag-
gregate size (Kreyling et al., 2009). Thiswas demonstrated by transloca-
tion of NMs to secondary organs such as the liver, heart, spleen, or
kidney, subsequent to pulmonary uptake (Choi et al., 2010;
Kermanizadeh et al., 2015; Kreyling et al., 2013; Moreno-Horn and
Gebel, 2014). Kreyling et al. (2013) concluded that the extent of NM
translocation is rather low. For risk assessment, knowledge about expo-
sure including total uptake ofNMsand retainedmultiple organburdens,
as well as tissue localization, and responses is necessary. Basic studies
on the biokinetics of polymer nanoparticles (NPs) used in therapeutic
applications have revealed size, surface characteristics, and shape as im-
portant parameters for their biodistribution in vivo (Petros and
DeSimone, 2010). While liposomes were found to be rapidly cleared
by extravasation or renal clearance if their size ranges between 5 and
10 nm, these mechanisms were not effective at entity sizes above
10 nm (Torchilin, 1998; Vinogradov et al., 2002). Larger entities of ~
100–200 nm on the other hand, are cleared by the reticuloendothelial
system (Petros and DeSimone, 2010). From these findings, a narrow
size range of 10–100 nm was concluded to be optimal to achieve en-
hanced permeability and retention for particulate drug carriers (Petros
and DeSimone, 2010). Particle binding and uptake by macrophages is
largely influenced by opsonization, the adsorption to the particle sur-
face of protein entities capable of interactingwith specific plasmamem-
brane receptors. In addition to opsonization, the interaction between
particles and blood protein may lead to further effects such as interfer-
ence with the blood-clotting cascade, a process that may lead to fibrin
formation and anaphylaxis because of complement activation. Preven-
tion of opsonization and complement activationmay reduce particulate
uptake by macrophages (Moghimi et al., 2001). Neutral vesicles were
found to poorly activate the complement system (Chonn et al., 1991;
Devine and Bradley, 1998) and to circulate longer in rats when com-
pared to equivalent anionic examples (Senior and Gregoriadis, 1982).
The impact of protein binding observed in the case of therapeutically
used polymer particles ismeanwhile recognized for allmaterials includ-
ing NMs for which the term “biomolecular corona” was established,
reviewed byMonopoli et al. (2012). Elements of such a corona acquired
upon the first contact with the physiological environmentmight prevail
on the particle surface during the onward transport of the material as
has been shown for polymeric NPs (Cedervall et al., 2007) and silica
(Tenzer et al., 2011). Moreover, the coronamight impact a particle's ca-
pability to cross biological barriers (Monopoli et al., 2012). Corona for-
mation is influenced by the ratio between surface area and protein
concentration (Cedervall et al., 2007; Monopoli et al., 2011). The radius
of curvature is considered as another key parameter (Cedervall et al.,
2007; Dobrovolskaia et al., 2009; Lundqvist et al., 2008; Tenzer et al.,
2011; Zhang et al., 2011). In studies with amorphous silica NPs, particle
size impacted the quantity of 37% of all proteins identified, includ-
ing toxicologically relevant candidates (Tenzer et al., 2011). Inhaled
silica NPs acquire a corona during their passage through the respira-
tory tract lining fluid that is different from the one acquired by the
same particles in plasma or whole blood. Investigations of the in-
volved proteins indicate opsonization in preparation of particle
phagocytosis and clearance from the lungs (Kumar et al., 2016).
Currently most studies on corona formation are carried out with
plasma, therefore they are of limited use for inhalation toxicology.
In addition, first results indicate that biomolecule absorption from
bronchoalveolar lavage fluid (BALF) may equalize particle surface
properties (Whitwell et al., 2016).

Under real-life conditions, the majority of airborne NMs appear in
agglomerated form. Such agglomerates behave like larger particles
with respect to lung deposition, and hence it is crucial to understand
where andwhen (e.g. in the product formulation, during aerosolization,
or in the lung lining fluid) agglomeration occurs (Aalapati et al., 2014;
Konduru et al., 2014; Methner et al., 2010; Morfeld et al., 2012;
Pauluhn, 2009b; Seipenbusch et al., 2008; Srinivas et al., 2011). Even ag-
glomerated NMs have almost the same high surface area as primary
particles; they induce stronger effects per unit mass than larger micro-
particles. A contentious issue is the potential deagglomeration of NMs.
One side argues that currently there is no evidence and that it is unlikely
with respect to the underlying knowledge of physical behavior that
NMs deagglomerate in biological milieus (Creutzenberg et al., 2012a;
Levy et al., 2012; Preining, 1998). The other side counters that
deagglomeration in the lung may occur for some, but not necessarily
for all NMs (Mercer et al., 2013; Oberdörster et al., 1992a), keeping in
mind the many possible, yet untested, NMs.

In addition to agglomeration, particle dissolution is increasingly
recognized as a fundamental parameter influencing inhalation toxic-
ity due to the reduction of particle size and related changes of disso-
lution kinetics (Pauluhn, 2014a). Since dissolution of metal oxide
NMs in vivo varies widely, it has to be critically evaluated in each
case whether the metal component detected in secondary organs
following inhalation arrived there as the original NM or if the origi-
nal NM dissolved in the lungs or distal to the ABB and then the ions
translocated. Recently developed analytical methods allow for a sen-
sitive detection of both particulate and dissolved fractions, which is
important but rarely reported.

So far, there has been no valid evidence that NMs show hazards that
are different frombulkmaterials (Donaldson and Poland, 2013; Gebel et
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al., 2014). However, the issue remains open since the occupational ex-
posure to materials, summarized as granular biopersistent particles
without known significant specific toxicity (GBP) (Roller and Pott,
2006) at concentrations below existing exposure limits correlates with
the development of lung diseases (Cherrie et al., 2013; Kuempel et al.,
2014). Moreover, epidemiology or studies of chronic effects of
engineered NMs are scarce. GBP materials are also referred to as poorly
soluble particles (PSPs) (Bormet al., 2015) or poorly soluble low toxicity
dusts (Dankovic et al., 2007). In the following, recent studies on NM
biokinetics and biopersistence are discussed in relation to potential tox-
icity. We further present results achieved with new analytical tech-
niques and their potential benefit for the elucidation of in vivo
biopersistence.

2. The overload concept of particle inhalation and carcinogenicity

Potential carcinogenicity of biopersistent NMs is of concern. The
mode of action of GBP materials and the sensitivity of different animal
models to lung cancer has been extensively discussed. In the late
1980s, a hypothesis on the mode of action of chronic lung toxicity was
developed for dusts, which were called nuisance dusts at that time
(Morrow, 1988). Dust over-loading by GBP was defined by Morrow as
the failure of alveolar macrophages (AM) to remove dust due to the
loss of AM motility. According to Morrow increasing dust loading was
associated with a progressive reduction in particle clearance from the
deep lung. He postulated that if the particulate volume in an AM
exceeded 6% of the AM volume, the overload effect appears to be initiat-
ed in the rat. Complete cessation of AM-mediated clearance occurs
when the phagocytosed particle volume reaches about 60% of the AM
volume, as demonstrated in a subsequent studywith 3 and 10 μmpoly-
styrene particles (Oberdörster et al., 1992b).

When testing the applicability of the volumetric overload hypothesis
for PSPs, Oberdörster et al. (1994) concluded that the surface area of
phagocytized nano- and microparticles correlates better with the di-
minished particulate matter clearance kinetics than the phagocytized
particle volume. Regarding the particle volume, void spaces between
the packed particles inside AMs have to be considered, i.e., it is not the
material density but the packing density that determines the volume.
However, even with a void space correction, Oberdörster et al. (1994)
concluded that the phagocytized volume did not show a good correla-
tion with impaired particle clearance. This conclusion was based on an
experiment in which rats were exposed by inhalation for twelve
weeks to the same high concentration (23 mg/m3) of either nano- or
micro-sized titanium dioxide (TiO2) or crystalline SiO2 (quartz) parti-
cles (Oberdörster et al., 1994). Inhalation was followed by intratracheal
delivery of radioactive tracer particles. However, this conclusion is sub-
ject to debate regarding the correction of the biologically relevant void
spaces. The agglomerate volume of ultrafine TiO2 is 1.6 g/cm3, themate-
rial density is 4.3 g/cm3 (Pauluhn, 2011). The packing density in AMs
may be assumed to be even more different due to the fact that in addi-
tion void space between agglomerates in AMs also has to be taken into
account. During the 180-day post-exposure period in the study of
Oberdörster et al. (1994), lung clearance of the nano-TiO2 was 8-fold
slower versus only 2-fold slower in micro-TiO2 exposed rats compared
to unexposed controls. Oberdörster et al. (1994) concluded that the di-
minished clearance correlated with TiO2 surface areas, confirming the
PSP status of both nano- and micro-TiO2. Quartz, as a PSP of high cyto-
toxicity, atmuch lower lungburdens induced analmost 30-fold retarda-
tion of test particle clearance (Oberdörster et al., 1997). However, a
different opinion is that this result may also be explained by the lower
clearance rate for the ultrafine TiO2 due to a higher total agglomerate
volume of the inhaled material. The void space in agglomerates of
nano-sized primary particles generally represents a relevant volume
portion of the total agglomerate. This leads to a higher volume load in
the AMs. It may be estimated that the total volume of nano-TiO2 was
4-fold that of themicro-TiO2. Thismay also explain the slower clearance
of nano-TiO2 compared to the micro-TiO2 found in Oberdörster et al.
(1994).

Recent research suggests that surface area may be the optional dose
metric to explain the acute effects of instilled or inhaled particles, but
not for repeated dosing leading to inflammation (Pauluhn, 2014b;
Schmid and Stoeger, 2016). Some authors have suggested that repeated
dosing leading to inflammation may be better explained by particle ag-
glomerate volume (MAK commission, 2014; Pauluhn, 2011).
Supporting particle agglomerate volume as relevant dose metric and
not surface area, the relative level of polymorphonuclear neutrophilic
leucocytes (PMN) in the BALF of rats at 11 months post-exposure was
found to be almost five times lower with high surface-area carbon
black in comparison to low surface-area carbon black at the identical
surface area concentration (dose adjusted accordingly; 7 mg/m3 high
surface-area carbon black vs. 50 mg/m3 low surface-area carbon black)
(Elder et al., 2005).

In 2015, a health-based reference inhalation value for workplace ex-
posure to nano-sized GBP was derived based on the avoidance of
threshold-dependent sustained inflammatory effects in the lungs
(Committee on Hazardous Substances, 2015). For the derivation of the
reference value, well performed and reported inhalation studies with
TiO2 (Bermudez et al., 2004; Creutzenberg, 2013), AlOOH (Pauluhn,
2009b) and carbon black Printex® 90 (Elder et al., 2005) were evaluat-
ed. Lung inflammation was investigated as the relevant toxicological
endpoint and no observed adverse effect concentration (NOAEC) values
were determined based on induction of PMNs in the BALF. For the der-
ivation of the reference value, two different approacheswere employed.
The first approach according to Technical Rule 901 (AGS, 2010) recom-
mends standard factors for time extrapolation, a reduced variability fac-
tor of 3 in consideration that rats are rather sensitive to particle-induced
lung inflammation, and the increased respiratory volumeof aworker. In
a second approach, described in detail in Technical Rule 910 (AGS,
2016), particle deposition is modeled using the Multiple-Path Particle
Dosimetry model (MPPD version 2.11) and calculation of a human
equivalent concentration based on the data from the respective animal
experiments. The evaluation came to the conclusion that particle ag-
glomerate volume was the best dose metric explaining the chronic in-
flammation of nanoscaled GBP/PSP. This was based on comparing
either particle agglomerate volume or specific surface area to derive ref-
erence values from each of the single inhalation studies included in the
evaluation. In case of using particle agglomerate volume as dosemetric,
the reference values derived from each study generally differed by a fac-
tor of 2. In case of using specific surface area as dose metric the derived
reference values differed by one order of magnitude. Compared to the
occupational exposure limit for microscaled GBP, the inflammatory po-
tency of nano-sized GBP was higher by a factor of 4 when referring to
mass concentration. The mode of action was assumed to be identical
for nanoscaled and microscaled GBP. The nanoscaled materials exhibit
a higher portion of void spaces in their agglomerates and thus possess
a higher displacement volume in alveolar macrophages when compar-
ing identical mass concentrations, leading to a higher inflammatory
potency.

On the other hand, surface area was considered by others as the
most appropriate metrics to estimate the biologically effective dose
that causes the toxic effect (Donaldson et al., 2013). From subchronic in-
halation testing of TiO2 and BaSO4 particles inWistar rats, a threshold of
1 cm2 particle surface area per cm2 proximal alveolar region was con-
cluded for the onset of inflammation based on PMN activation in the
BALF (Donaldson et al., 2008).

A clear-cut threshold for overload cannot be derived, because parti-
cle clearance from the lung decreases in a linear fashionwith increasing
dust load (Roller, 2003). The consequence of higher dust loading is
chronic inflammation mediated by AMs and neutrophils in the deeper
airways. Lung carcinogenicity and other lung abnormalities are the con-
sequence of chronic inflammation, which was assumed by some re-
searchers to be species-specific for the rat as hamsters and mice did



Fig. 1. Method equivalency study for analysis of homogenized liver tissue previously
spiked with CeO2 by inductively coupled plasma mass spectrometry (ICP-MS). (A):
linearity at BfR (R2 = 0.999977), (B): linearity at Fraunhofer ITEM (R2 = 0.999692)
(Tentschert and Kock, unpublished).
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not show lung tumors after GBP exposure. Others argued that the latter
speciesmay not be adequate indicators for human lung carcinogenicity.
For instance, the human carcinogens benzo[a]pyrene and vinyl chloride
did not show evidence of carcinogenicity after inhalation in hamsters,
and mice did not show evidence of carcinogenicity after crystalline sili-
con dioxide (SiO2) exposure (Mauderly, 1997). Human epidemiology so
far does not indicate a lung carcinogenicity of GBP, e.g., carbon black,
TiO2, or coal dust (IARC, 1997; IARC, 2010). There is wide consensus
that diesel engine emissions (DEE) can cause lung cancer in humans
(Health Effects Institute, 2015; IARC, 2014). This effect is caused by die-
sel exhaust particles (DEP) which are nano-sized GBP. It was first as-
sumed that polyaromatic hydrocarbons (PAH) adsorbed to DEP play a
relevant role in lung carcinogenicity (Schenker, 1980; U.S. EPA, 2002).
However, quantitative evaluations show that the PAH levels adsorbed
to DEP are two to three orders of magnitude too low to explain the
lung carcinogenicity mediated by DEE (Gebel, unpublished). Thus,
lung carcinogenicity in rats and humans is mediated by DEP, i.e., the
nano-sized elemental carbon core particle, and not by PAH. As a conse-
quence, it is rather questionable whether lung tumors after chronic in-
halation exposure to GBP are specific to the rat only. It remains to be
clarified whether the underlying mode of action can be interpreted to
be threshold-like and at which definite dose such a threshold may be
set.

Based on data from studies in animals and humans, dosimetric risk
extrapolation to humans (Oberdörster, 1989) has to consider additional
species differences related to the biokinetics of inhaled particulate ma-
terials. These include the existence of interstitial lung clearance path-
ways for both spherical and fibrous particles to the pleural space and
subsequent clearance via parietal pleura stomata (Donaldson et al.,
2010); the finding of lung tumor induction following multi-walled car-
bon nanotube (MWCNT) inhalation in rats (Kasai et al., 2016; Sargent et
al., 2014); and the greater interstitial compartmentalization of retained
particles in primates versus rodents (Gregoratto et al., 2010; Nikula et
al., 1997; Nikula et al., 2001).

In conclusion, AM function to clear retained particles of low
biosolubility is a sensitive indicator of adverse effects and applies to
both high- and low-toxicity particles. AM volumetric loadmay be a use-
ful indicator of lung overload for PSP microparticles. Other hypotheses
consider the dosimetric particle surface area to be more universally ap-
plicable to both nano- and microparticles. However, regardless of what
parameter is applied, the determination of pulmonary retention half-
times of particles as a key indicator of AM clearance function to charac-
terize overload is essential for confirmation of the overload hypothesis
and approval of a threshold-like toxicity. Recent findings on this and
further particle distribution are discussed below.

3. Pulmonary retention and biokinetics of nanoparticles following
inhalation

In order to test the hypothesis that lung clearance is impaired under
overload conditions, a 24-month Combined Chronic Toxicity-Carcino-
genicity Study, according to OECD TG 453 (Gebel and Landsiedel,
2013; Ma-Hock et al., 2014; NANoREG, 2015a) in which Wistar rats
were exposed to nano-sized CeO2 over 24 months is currently being
performed. The long-term experiment was preceded by a 28-day Sub-
acute Inhalation Toxicity pilot study according to OECD TG 412 (Keller
et al., 2014). Here, it was intended to establish appropriate doses, repre-
sentative for the range of low level environmental and occupational ex-
posure scenarios via intermediate particle concentrations, representing
a potential threshold above which overload conditions in the lung
might exist, to a high exposure concentration for which overload-im-
paired particle clearance was certainly anticipated. In both inhalation
studies, whole body exposure of Wistar rats was performed for 8 h
per day and 5 days a week. During the 28-day pilot study, nano-CeO2

at a low level and expected no observed adverse effect level concentra-
tion of 0.5mg/m3; amedium level concentration of 5mg/m3, and a high
level concentration of 25 mg/m3, which is suspected to cause toxic ef-
fects, were applied. Beside the lung burden assessment, an analysis of
systemic CeO2 distribution to other organs, including lung associated
lymph nodes (LALN), liver, kidney, blood, spleen, brain, heart, and olfac-
tory bulbwas conducted in the frame of the European project NANoREG
(2013). The CeO2 content of organs of the subacute 28-day study was
determined on days 28, 30, 36, 62, 92, and 156. CeO2 organ burdens
were calculated from total cerium (Ce) contents [μg/organ] measured
by inductively coupled plasma mass spectrometry (ICP-MS) following
freeze-drying or plasma-ashing and microwave-assisted wet chemical
digestion of the samples. The suitability of the appliedmethodwas con-
firmed by a method equivalence study between BfR and Fraunhofer
ITEM (Tentschert and Kock, unpublished) (Fig. 1). Analysis of the
lungs from the 28-day pilot study revealed half-times of N80 days for
medium (5 mg/m3) and high (25 mg/m3) nano-CeO2 exposure level,
and of approximately 69 days for the low level aerosol concentration
of 0.5 mg/m3 (NANoREG, 2015b) (Fig. 2). A typical half-time for pulmo-
narymacrophage-mediated clearance of NMs from the lung of between
50 and 80 days is assumed for GBP particles (Pauluhn, 2011). Half-times
above 80 days are an indication of particle overload in the lung or of
very insoluble particles. Accordingly, the nano-CeO2 amounts applied
with the medium and high exposure concentrations induced particle
overload, as indicated by clearance half-times of N80 days. Based on
the lung burden results in the subacute 28-day study, concentrations
below 0.5 mg/m3 were suggested for the application of nano-CeO2 in
the chronic 24-month study in order to prevent particle overload
(Keller et al., 2013; NANoREG, 2015a).

Image of Fig. 1


Fig. 2. Post-exposure cerium dioxide (CeO2) lung burden of rats previously exposed to
nano-CeO2 aerosol for 28 days. Values for low (0.5 mg/m3), medium (5 mg/m3) and
high (25 mg/m3) dose group are shown. Each data point represents the mean value of
four injections of a single tissue extract (NANoREG, 2015b).
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The CeO2 concentration in the LALNs increased steadily during the
post-exposure period of the 28-day pilot study, with the only exception
being the low-level exposure group in which the CeO2 concentration
droppedmarkedly between study day 92 and 156 (Kock, unpublished).
This suggests that the lymphatic draining system remained a major
mechanism for particle clearance from the lungs and experienced no
long-termdamage due to nano-CeO2 exposure at the low exposure con-
centration (0.5 mg/m3).

Analysis of further organs from the 28-day pilot study revealed a
CeO2 content in the order: liver N spleen N kidney N blood N heart,
brain, olfactory bulb (NANoREG, 2015c). This finding confirms that be-
yond lung, the liver, spleen, and kidney, in which CeO2 was recorded
in the ppm range, are the main target organs for CeO2 following inhala-
tion. In contrast, concentrations in blood, heart and brain were in the
lower ppb range. The organ burden recorded for lung, liver, spleen, kid-
ney and blood is in accordance with previous results achieved by
Geraets et al. (2012), who investigated the systemic distribution of
micro- and nanosized CeO2 in rats following 28-day inhalation: both
micro- and nanosized CeO2 were detected in all investigated
extrapulmonary tissues, i.e., liver, spleen, kidney, testis, epididymis,
and brain. Like CeO2, a low systemic distribution was confirmed for
three TiO2 NMs (NM-103, NM-104, NM-105) with different surface
characteristics, investigated in a 28-day test. In the study exposure con-
centrations of 4, 12, and 48 mg/m3 were applied by a dry powder dis-
persion technique to rats (Creutzenberg, 2013). AMs were found to be
themost prominent compartment of particle detection by transmission
electronmicroscopy (TEM) analysis, while translocation to liver or brain
wasbelow the limit of detection. The solubility of the test itemswas lim-
ited to 1–5% by the given conditions of the lung ambience. In inhalation
tests with NMs, the agglomeration status varies depending on factors
such as the aerosol generation technique, the aerosol concentration,
and the dispersion efficiency. These parameters predominantly deter-
mine the deposition efficiency and subsequent biokinetic fate. In confir-
mation of this, no significant differences were recorded regarding the
systemic distribution of one micro- and two nanosized CeO2 materials
with primary particle sizes of b5000 nm, 5–10, and 40 nm, occurring
with a similarmassmedian diameter of 1.02, 1.17, and 1.40 μm, respec-
tively, in the test aerosol. NM agglomeration is known to influence the
site of NM deposition. Several studies to elucidate the effects of agglom-
eration and dissolution on translocation to secondary organs are avail-
able (Bruinink et al., 2015; Landsiedel et al., 2012). For this reason, a
proper design and characterization of the aerosolization is required
(Creutzenberg, 2012; Geiser and Kreyling, 2010; Hirsch et al., 2014).
The experimental aerodynamic size of a NM can be controlled by
selecting various dispersion modes. Beside a pristine dry powder or liq-
uid formulation, a spark generator may be used (Meuller et al., 2012).
Individual NPs are not phagocytized highly efficiently by macrophages
and may show an enhanced potential for translocation due to their
small size (Pauluhn, 2009a). On the contrary, agglomerates consisting
of NMs behave aerodynamically in their interaction with macrophages
similar to the mechanisms known for fine micro-scaled particles
(Braakhuis et al., 2014). In order to investigate if there is
deagglomeration in vivo, the application of sensitive imaging tech-
niques, allowing for particle detection, is necessary. This would further
enable investigation whether different surface characteristics influence
particle distribution at the organ and tissue level. Apart from effects of
agglomeration, there are several studies that indicate the relevance of
biodissolution to NP biokinetics. Two acute inhalation tests, using liquid
formulations, focused on this aspect: i.) following deposition of approx-
imately 50 μg Eu2O3/rat a very low elemental translocation to remote
sites was found with a maximum of 0.9% in liver (Creutzenberg et al.,
2016); ii.) at approximately 30 μg of a 60Co-labelledMWCNT/rat the de-
tected elemental translocation was related predominantly to dissolved
60Co with a maximum of 1% in liver (Hackbarth, 2015).

Moreover, in the OECD Testing Programme on Nanomaterials
(OECD, 2016), a zinc oxide (ZnO) NM (NM-111) and an amorphous
SiO2 sample (NM-200) were analyzed in 90-day tests for toxic effects
and biokinetic behavior using dry powder dispersion (Creutzenberg et
al., 2012b). NM-111 showed high solubility and only 2% of the deposited
mass was detectable in lungs after the end of the exposure (half-time
b 1 week). Other tissue levels were not increased. NM-200 also showed
an evident dissolution effect. As a consequence, a total lung clearance
half-time of approximately 30 days was calculated, which is well
below the established value for particle overload (Pauluhn, 2011). Sim-
ilar to NM-111, no increase of other tissue levels was observed. In the
light of these data it is obvious, that in addition to thewell-characterized
aerodynamics, the analysis of biopersistence should be an integral part
of the test item characterization. Often, a material showing negligible
solubility inwater exhibits considerable dissolution under physiological
conditions. For example, elemental platinum particles (≥4 nm diame-
ter) on Al2O3 (≤5 μm diameter) simulating automobile exhaust con-
verters were inhaled by rats in a 90-day study. Up to 30% of the fine
dispersed platinum deposited was bioavailable. Using size exclusion
chromatography (SEC) in combination with ICP/MS, it was shown that
≥90% of the bioavailable platinum was bound to approx. 80–800 kDa
compounds, most likely proteins. In contrast, platinum as a noble
metal is ‘not soluble’ in water (Artelt et al., 1999). Furthermore,
Abzhanova et al. (2016) reported high dissolution rates for nickel parti-
cles in biological simulants. After 2 h of exposure to artificial saliva or ly-
sosomal liquid, dissolution rates of up to 30 respectively 60% were
recorded. Nickel is considered insoluble in water, however its release
from metallic jewelry due to dissolution in artificial sweat is well
known (Thyssen et al., 2009).

When describing the kinetics of NMs, it is therefore necessary to
study the kinetics of particulate and dissolved forms. Beside a diffusion
driven translocation, specific transporter proteins were described e.g.,
for the transport of silver (Bury et al., 1999) and zinc (Kambe et al.,
2014) across biological membranes. For Ce, transferrin binding is ex-
pected for the trivalent form (Zende-Del et al., 2013) and confirmed
for the tetravalent form (Baker et al., 2000; Subramanian and Oomen,
1981). Whereas the kinetics of the particulate form is merely driven
by uptake and dissolution in the reticuloendothelial system (RES), the
kinetics of molecular compounds and ions is based on diffusion, carrier
mediated uptake, and onmetabolic transformation. Information on par-
ticle dissolution rate in various environments in the body seems to be
key to a better understanding of NMkinetics. This also implies that plas-
ma kinetics do not give a proper reflection of tissue kinetics and body
burden. Hence, it can be concluded that study designs for molecular
compounds, based on plasma kinetics, insufficiently support insight
into NM kinetics (Hagens et al., 2007; Riviere, 2009). Chemical analysis
together with imaging techniques should be used to clarify whether
ionic or particulate species translocate from lungs following inhalation.
This integrative analysis is important to allow a conclusive
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Fig. 3. Biokinetics of neutron activated nanoparticles. (A) Lung clearance of cerium-141
(141Ce) after instillation of cerium-141 dioxide (141CeO2) nanoparticles and cerium-141
chloride (141CeCl). Reprinted from Environmental Science: Nano 1, Molina RM, Konduru
NV, Jimenez RJ, Pyrgiotakis G, Demokritou P, Wohlleben W, Brain, JD, Bioavailability,
distribution and clearance of tracheally instilled, gavaged or injected cerium dioxide
nanoparticles and ionic cerium, 561–573, Copyright 2014, with permission from the
Royal Society for Chemistry. (B) Extrapulmonary retention of 141Ce and barium-131
(131Ba) after intratracheal instillation of 141CeO2 and barium-131 sulfate (131BaSO4)
nanoparticles (Konduru et al., 2014; Molina et al., 2014).
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interpretation of NM biokinetic data in order to estimate whether there
is an increased barrier penetration and organ-specific accumulation
outside of the lungs in comparison to their respective bulk materials
(Kreyling et al., 2009).

4. A comparison between CeO2 and BaSO4 biokinetics following
instillation

By working with radioactively labelled NMs, a complete recovery
and exact localization of the applied dose is realized, albeit limited to
the labelled element (Molina et al., 2014). This has the potential to bet-
ter predict NM biokinetics compared to common techniques of elemen-
tal analysis, such as ICP-MS, which requires sample digestion. Even
though CeO2 and barium sulfate (BaSO4) were both considered GBP,
BaSO4 NM had a much shorter half-time following instillation. Experi-
ments were performed with nano-BaSO4, as well as nano-CeO2 and
ionic Ce, all of which were subjected to neutron activation resulting in
Ba and Ce becoming the gamma emitters 131Ba and 141Ce, respectively.
A limitation of these isotopes for long term studies is their decay half-
life, ~12 and 32.5 days, respectively.

Fig. 3A shows the pulmonary clearance of 141Ce for four weeks after
intratracheal instillation into rats (Molina et al., 2014). Nano-CeO2 is
slowly cleared from the lungs. Ionic Ce also had a slow clearance from
the lungs, consistent with its low elimination in urine and feces and
organ retention after systemic injection (Molina et al., 2014; Yokel et
al., 2014a). Ce retention following ionic Ce instillationmay be attributed
to the formation of persistent insoluble ceriumphosphates that are then
cleared slowly (Berry et al., 1989; Berry et al., 1997). A contributor to the
slow clearance of nano-CeO2 might be dissolution of particles followed
by subsequent particle formation.

Nano-BaSO4 had a much shorter half-time (Konduru et al., 2014).
Fig. 3B describes translocation of radioactive 131Ba from the lungs to
extrapulmonary organs. It compares nano-BaSO4 with nano-CeO2. The
differences are dramatic. Surprisingly, one-third of the instilled dose of
Ba appears in other organs, especially bone marrow (Konduru et al.,
2014). While it is possible that this represents intact NM translocation
across the ABB, particle dissolution and ion transport into the blood
and then the bone marrow is a far more likely mechanism.

Overall, 141Ce in nano-CeO2 or CeCl3 is cleared slowly from the lungs.
Ionic Ce is cleared somewhat faster than particles. There is also greater
translocation of 141Ce following intratracheal instillation versus after ga-
vage (Molina et al., 2014). 131BaSO4 has greater bioavailability and is
cleared much faster from the lungs than CeO2. Moreover,
extrapulmonary retention of Ba is much higher than of Ce post-instilla-
tion (Fig. 3B). CeO2 and BaSO4 were also found to exhibit very low bio-
availability following gavage. Therefore, fur deposition and subsequent
grooming during aerosol exposure to nano-CeO2 or nano-BaSO4 are un-
likely to result in retention in other organs.

5. Biokinetics of CeO2 nanoparticles after infusion: the influence of
size and solubility

Since NM toxicity is potentially influenced by their specific
biokinetics (Oberdörster et al., 2005; Semmler et al., 2004), there is a
need to elucidate the impact of physico-chemical properties on NM dis-
tribution in vivo. In consideration of recent results on tissue distribution
of micro- and nano-sized CeO2 particles in rats (Geraets et al., 2012),
this demand may be considered relevant for microscaled particles
alike. The human body is prepared to deal with particles in blood by
means of the RES (Arvizo et al., 2010; Card et al., 2008; Kettiger et al.,
2013; Sa et al., 2012) and biodegradation in the phagolysosomes
(Ernsting et al., 2013; Yu and Zheng, 2015). However, there is insuffi-
cient knowledge on how physico-chemical properties of particles,
such as size, solubility, and shape affect their kinetics.

A systematic comparison of a commercial 30 nm platelet, and in-
house synthesized/extensively characterized citrate-coated ~5, 15, 30,
and 55 nm polyhedral/cubic CeO2, and CeO2 nanorods (10 to 15 × 50
to 460 nm) was performed utilizing intravenous infusion of rats. Up to
750 mg/kg commercial nano-sized CeO2 was tolerated (Yokel et al.,
2009). The initial clearance half-time of Ce from the blood after intrave-
nous infusion of 15, 30, and 55 nm CeO2 was b10 min (Dan et al.,
2012b). Nano-CeO2 of 5 nm circulated much longer (Dan et al.,
2012b). Ce blood concentration increased a few hours after intravenous
infusion of the 15 and 30 nm CeO2, a behavior not seen with the 5 or
55 nmCeO2 (Dan et al., 2012b). In the first 2weeks after 30 nmCeO2 in-
fusion 0.01% was excreted in urine and 0.5% in feces (Yokel et al., 2012).
Similarly, urinary Ce was not detected after oral, intraperitoneal, or in-
travenous administration of 3 to 5 nm CeO2 to mice (Hirst et al.,
2013). Clearance of nano-CeO2 was primarily into the liver (which
contained the greatest percentage of the dose), spleen, and bone mar-
row (Yokel et al., 2012; Yokel et al., 2013). Lower Ce levels were detect-
ed in 13 other organs. This biodistribution pattern is similar to that seen
after intravenous administration of 5.6 nm 3-aminopropylsilyl-an-
chored N-succinimidyl 4-[18F]fluorobenzoate coated nano-CeO2 to rats
(Rojas et al., 2012), and 2.9 nm citrate-EDTA coated nano-CeO2 to
mice (Heckman et al., 2013). There was little Ce decrease over 90 days
other than some from the liver (Yokel et al., 2012), whereas Ce levels
in the liver, spleen, brain, and kidney of mice decreased over 5 months
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after intravenous administration of 2.9 nm citrate-EDTA coated nano-
CeO2 (Heckman et al., 2013). Distribution and persistence were similar
after 11 versus 85mg/kg 5 nm CeO2 and 6 versus 85mg/kg 30 nmCeO2,
suggesting lack of clearance mechanism overload (Yokel et al., 2014b).
Distribution and persistence after 1 versus 5 daily 11 mg/kg 5 nm CeO2

intravenous infusionswere similar, indicating no compensatorymecha-
nisms (Yokel et al., 2014b). CeO2 nanorod organ distribution and reten-
tion were similar to polyhedral/cubic CeO2, suggesting no appreciable
shape effect (Yokel et al., 2014b). Brain CeO2 association was not con-
centration- or infusion-duration-dependent following carotid artery
5 nmCeO2 infusions, pointing to a saturatedmechanismof brain uptake
(Dan et al., 2012a). When separated from brain parenchyma, blood-
brain barrier (BBB) cells contained N99% of the nano-CeO2, consistent
with TEM observations of little to no nano-CeO2 distribution into brain
parenchyma (Hardas et al., 2010; Yokel et al., 2009; Yokel et al., 2013).
Following their intravenous and intracarotid administration, 5 nm
CeO2 were associated with the BBB luminal surface (Dan et al., 2012a;
Hardas et al., 2010). Release from the vascular luminal surface, perhaps
due to protein coating, may result in its re-circulation in blood, perhaps
explaining the Ce increase after intravenous infusion of the 15 and
30 nm CeO2 (Dan et al., 2012b). Nano-CeO2 accumulated as micron-
sized intracellular agglomerates in Kupffer cells, hepatocytes, hepatic
stellate cells, and spleen red pulp (Tseng et al., 2012; Yokel et al.,
2013). Ninety days after 30 nm cubic CeO2 intravenous infusion, clouds
of 1 to 3 nmCeO2were seen in the liver near the accumulated CeO2 par-
ticles that now had rounded corners and edges (Graham et al., 2014).
The 1 to 3 nm CeO2 exhibited enhanced Ce3+ and phosphorus suggest-
ing partial dissolution of nano-sized CeO2 particles followed by cerium
phosphate precipitation. Hence, bioprocessing produced a more stable,
anti-oxidant form of nano-CeO2. Intravenous nano-CeO2 is acutely
quite non-toxic, but persists and is bioprocessed by unknown mecha-
nisms to Ce-containing products that may have different biological ef-
fects. Identification of the relevant Ce speciation occurring in vivo
might lead to the elucidation of potential biological effects.
6. New imaging techniques for nanomaterial characterization in
vitro and ex vivo

Analytical quantification of NMs in digested tissue or in in vitro cul-
tures by methods such as ICP-MS can only provide limited information
on size, shape, and speciation of particles and especially no quantifica-
tion of the effective dose at the cellular level. At the same time, informa-
tion on deagglomeration and biopersistence is urgently required for the
establishment of NM biokinetics.

As described previously, high-resolution TEM was successfully ap-
plied for imaging of nano-CeO2 alteration in vivo (Graham et al.,
2014). A variety of further imaging techniques were recently adapted
to visualize NPs and NP aggregates in biological matrices such as time-
of-flight secondary ion mass spectrometry (ToF-SIMS) (Haase et al.,
2011), ion beam microscopy (IBM) (Zhou et al., 2014), and confocal
Raman microscopy (CRM) (Romero et al., 2011b). ToF-SIMS, a method
originally developed in material science (Fletcher et al., 2011), enables
the chemical identification of CeO2 particles in tissues based on the de-
tection of the CeO+ ion; it provides a size estimation with a spatial res-
olution down to 60 nmon nanoscale depth (Holzweber et al., 2014) and
a distribution of NMs in the z-direction with an accuracy of about 9 nm.
ToF-SIMS was applied to analyze cells of the micro algae
Pseudokirchneriella subcapitata following a 72 h exposure to poly-acrylic
acid stabilized nano-CeO2. The results showed that 38% of the total Ce
directly associated with the algal cells. Moreover, a significant change
in the chemical composition of the cell wall was observed, indicating a
significant oxidative stress response within NP exposed cells (Booth et
al., 2015). IBM techniques, such as proton-induced X-ray emission
(PIXE) and Rutherford backscattering spectrometry (RBS), on the
other hand, allow for spatially resolved elemental imaging and
quantitative analysis at the single cell level with lateral resolution of
about 1 μm. By the combination of PIXE and RBS, quantification of the
genuine concentration of NMs in single cells and of metabolically rele-
vant cellular elements such as phosphorus, sulfur, calcium, potassium,
zinc, and iron with a sensitivity at the ppm range becomes possible
(Llop et al., 2014; Reinert et al., 2011; Zhou et al., 2014). Moreover,
RBS can reveal the distribution of NMs in the z-direction with an accu-
racy of about 50 nm (Lopis, unpublished). The method allows thus to
distinguish between NMs which are internalized or only attached to
the plasma membrane from the outside. Additionally, the molecule-
based imaging technique CRM provides 3D chemical composition im-
ages with a lateral resolution of about 260 nm. CRM reveals not only
the 3D NM distribution but also their 3D co-localization with cell com-
partments and biomolecules (Chernenko et al., 2009; Estrela-Lopis et
al., 2011; Haase et al., 2011; Matthaus et al., 2008; Romero et al.,
2011a; Romero et al., 2010; Romero et al., 2013; Silge et al., 2015).

The feasibility to locate and characterize CeO2 particles in lung tissue
sections by ToF-SIMS and PIXE was investigated using samples of the
28-day pilot study mentioned above (Gebel and Landsiedel, 2013;
Ma-Hock et al., 2014). ToF-SIMS analysis of deparaffinized tissue sec-
tions showed the occurrence of nano-CeO2 agglomerates in lung (Fig.
4) and liver (Jungnickel, unpublished) of animals of the highest dose
group (Gebel and Landsiedel, 2013;Ma-Hock et al., 2014). The detected
clusters were not equally distributed; a higher density of particles was
found in lung compared to liver. The application of PIXE on lung tissue
slices of animals of the highest dose group revealed a predominant oc-
currence of CeO2 particles in AMs located in the lumen of the alveoli
with amean concentration of about 30,000 ppm (Merker and Lopis, un-
published) (Fig. 5). Furthermore, the images revealed a rather inhomo-
geneous CeO2 distribution in the alveolar septum. The analysis of 30
alveoli revealed a mean CeO2 concentration of about 1700 ppm and
“hot spots” containingN5000ppm. ThemeanCe concentration in the al-
veolar septum was comparable in magnitude with that of phosphorus
and sulfur (Merker and Lopis, unpublished).

Nano-CeO2 was also detected in close vicinity to erythrocytes in
blood vessels in the lung after 28 days of nano-CeO2 inhalation (Fig.
4), consistent with nano-CeO2 on the surface of erythrocytes after 1 h
incubation (Hardas et al., 2010) and an increase of the fraction of 15
and 30 nm CeO2 associated with erythrocytes, white blood cells and
platelets over 4 h after their intravenous infusion (Dan et al., 2012b).
This might contribute to systemic redistribution of NMs through blood
circulation to other organs.

IBM and CRM techniques were further evaluated for their ability to
detect the intracellular concentration of elements in vitro. In A549 cells,
a human alveolar adenocarcinoma epithelial cell line (Giard et al.,
1973), the concentration of Ce following application of CeO2 in a concen-
tration of 10 μg/ml was found to be one order of magnitude higher com-
pared to the alveolar septum (Lopis, unpublished). Comparison of the
intracellular effective dose in cultured cells and tissues could help address
the in vitro/in vivo correlation on a quantitative basis (Cohen et al., 2015).

Based on the described findings, ToF-SIMS, IBM and CRM techniques
are currently applied to study particle uptake and fate in organ tissues
obtained from a combined chronic toxicity/carcinogenicity study
(Gebel and Landsiedel, 2013; Ma-Hock et al., 2014; NANoREG, 2015a).
While ToF-SIMS investigations are targeting particle identification and
accumulation in specific organs, IBM and PIXE studies are capable of
providing qualitative and quantitative information on local Ce concen-
trations in tissues and cells. This approach may reveal whether nano-
GBPs accumulate either as distinct particles, aggregates or agglomerates
within the tissue, andwhether they translocate to the lymphatic system
or the bloodstream with subsequent distribution to secondary organs
(Kato et al., 2003; Nemmar et al., 2004).

A combined application of such imaging techniques could help in-
troduce the methodology of morphometry (Weibel, 1979) to NP toxi-
cology. The degree and mechanism of uptake, localization, and
distribution of NMs in cells and organs are major issues in respect to



Fig. 4.Detection of ceriumdioxide (CeO2) particle clusters in lung tissue. (A): Time-of-flight secondary ionmass spectrometry image (1.5mm×1mm)of a deparaffinated lung tissue slice
from rats previously exposed to CeO2 aerosol (25 mg/m3) for 28 days. The total ion spectrum is displayed; yellow dots, signals of the CeO+ ion are representing CeO2 particles. (B)
Corresponding light microscopy image of A (0.75 mm × 1 mm) (Jungnickel, unpublished).
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toxicity and risk assessment of such materials. Addressing these issues
requires establishing innovative high-resolution dosimetry and imaging
methods, which are especially suitable for study of NMswithin their bi-
ological environment in vitro and in vivo.

Application of techniques such as ToF-SIMS, CRM, and IBM to organs
fromanimal experiments is currently limited, asmost of the tissue samples
are required for histopathology and quantitative element analysis in previ-
ously digested samples. In order to analyze the native status of NM distri-
bution, a conservation of the living cell status is necessary, which can be
achieved by techniques such as plunge freezing (Comolli et al., 2012).

However, despite the limited availability of tissue material, fast
freezing techniques are not established on a broad basis yet. On the
other hand, these techniques are common for alternative test systems
such as precision cut lung slices (PCLS) that can be used as a toxicity
screening method for chemicals and particles (Watson et al., 2016).
The advantages of using living lung slices include preservation of
organ structure, lower cost, fewer animals, and especially assays with
high throughput and high content. Cryopreservation helps to preserve
viability, metabolism, structure, and airway function. Results achieved
with PCLS are consistent with in vitro assays and in vivo animal models.
Thus, PCLS might be used as a suitable model for the investigation of
particle biokinetics in combination with imaging techniques.

7. Elucidation of nanomaterial biokinetics by physiologically-based
modeling

The potential of in silico tools in biokinetics has received increasing
attention. As an ultimate goal, a generic, physiologically-based
Fig. 5. Proton-induced X-ray emission (PIXE) images of sulfur (S), phosphorus (P), and cerium
dioxide (CeO2) aerosol (25 mg/m3) for 28 days. The grey area outlines the alveolar septum. (M
pharmacokinetic (PBPK) model is envisaged, that is able to describe
the biodistribution of any NM for any exposure route. Such a model
would offer the opportunity for a comparative internal dosimetry, help-
ing to understand effects observed in rodents and their potential rele-
vance to humans (Sweeney et al., 2015).

A three-compartment model including alveolar, interstitial, and
hilar lymph node compartments was developed in order to predict
the long-term retention of particles in the lungs of coal miners
(Kuempel et al., 2001a; Kuempel et al., 2001b). Particle sequestration,
excluding a portion that is translocated to lung interstitium and LALN
from macrophage mediated clearance was found essential for describ-
ing the disposition of GBP in lungs of humanswith chronic occupational
exposure. Adjustment for these differences in particle kinetics becomes
necessary when using rodent data for prediction of human lung dis-
eases. In an approach to describe retention and clearance of respirable
crystalline silica, Tran et al. (2002) have extended the human model
structure established by Kuempel and coworkers. Since reduction of
particle clearance in the underlying inhalation studies was attributed
to AMs, these are considered as a further compartment in their ap-
proach. Based on this refinedmodel, threshold doses of crystalline silica
that initiate inflammation and fibrosis were set at 0.20 ± 0.19 and 1.96
± 0.12 mg, respectively. Moreover, an extended number of compart-
ments representing particle mass on the alveolar surface, inside macro-
phages, interstitial space, in the lymph nodes, in the olfactory and in the
upper airways region was developed (MacCalman and Tran, 2009;
MacCalman et al., 2009). Data were acquired from in vivo studies in
rats with iridium and silver NPs (Fabian et al., 2008; Semmler et al.,
2004; Takenaka et al., 2001). Endotracheal instillation and inhalation,
(Ce) distribution in alveoli of lung tissue from rats, which had been exposed to cerium
erker and Lopis, unpublished).
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the different exposure methods applied respectively in these studies,
showed an influence on optimal parameter estimates and were men-
tioned as one difficulty for a validation (MacCalman et al., 2009). A re-
calibration of this model by a Bayesian population analysis for
improving assessment of parameter variability and uncertainty was
conducted by Sweeney et al. (2015). By this approach it became feasible
to calibrate the model for different data sets, in addition to the studies
used by MacCalman et al. (2009) and MacCalman and Tran (2009) ad-
ditional studies with iridium, carbon, and silver NPs were identified as
useful (Kreyling et al., 2009; Kreyling et al., 2002; Lankveld et al.,
2010). A predominant influence of the exposure route on biokinetics
was also confirmed in preliminary modeling efforts using nano-CeO2

(Carlander, unpublished). To avoid the complexities of the oral and pul-
monary routes, several recent approaches have investigated the
biodistribution of intravenously administeredNMs. The PBPKmodel de-
veloped by Li et al. (2014) consists of ten compartments interconnected
via the blood circulation: arterial blood, venous blood, lungs, spleen,
liver, kidneys, heart, brain, bone marrow, and rest of body. Each com-
partment has three sub-compartments corresponding to capillary
blood, tissue, and phagocytizing cells. The exchange of NPs between
blood and organs is described as flow- and diffusion-limited processes.
The permeability coefficient of the brain compartment is set to zero as-
suming an efficient BBB. The NMmass transfer in each compartment is
expressed as a first-order differential equation and the overall
biodistribution profile is obtained by simultaneous solution of all ten
differential equations over time. The model was optimized by best fit
to intravenous rat experimental data obtained with polyethylene
glycolylated polyacrylamide (PAA-PEG) NMs (Li et al., 2014).
Carlander et al. (2016) have slightly modified this model for simulta-
neous predictions of the following NMs: PAA-PEG, uncoated PAA, gold
and TiO2 NMs. These NMs were selected since sufficient experimental
biokinetic data for optimization are available. Essentially the same
model and physiological parameters as above were applied, whereas
NM-specific parameters were re-optimized by best fit. All four types of
NMs were adequately described in their biokinetic behavior by the
model, despite extensive differences in physico-chemical properties
and biokinetic profiles. Furthermore, the simulations demonstrated
that the dose exerts a profound impact on the biokinetics, since satura-
tion of the phagocytic cells at higher doses becomes a major limiting
step. The fitted model parameters that were most dependent on NM-
type included blood:tissue partition coefficients and the rate constant
for phagocytic uptake (Carlander et al., 2016). Since only four types of
NMs with several differences in characteristics were used, the relation-
ship between these characteristics and the NM-dependent model pa-
rameters could not be elucidated and more experimental data are
required. Intravenous biodistribution studies with associated PBPK
analyses would provide the most insight (Kreyling et al., 2009;
Kreyling et al., 2002; Semmler-Behnke et al., 2007; Semmler et al.,
2004; Sweeney et al., 2015). Biopersistence and solubility have been
identified as important parameters of biokinetic modeling (Bachler et
al., 2013; Lankveld et al., 2010; Sweeney et al., 2015) but need to be
aligned with other aspects such as agglomeration, corona formation
and phagocytosis. Further use of experimental data in PBPK modeling
can help to understand the interaction between these different mecha-
nisms and their influence on the biokinetics of NMs.

8. Conclusions

Detection and quantification of NMs and their transformation pre-
sents a challenge for human toxicology. The strong influence of
physico-chemical properties, in particular in situ solubility, on the
biokinetics of NMs following their inhalation requires a focus on pulmo-
nary nanotoxicology (Donaldson and Poland, 2013). Properties of parti-
cles, aggregates, and agglomerates, such as size and aerodynamic and
thermodynamic diameter, drive kinetic processes like pulmonary depo-
sition and dissolution. The relevance of lung overload for lung tumor
formation remains a difficult but important issue for risk assessment
of biopersistent particles, even those without known specific toxicity.
Correspondingly, the need to characterize the particle fate under phys-
iological conditions by qualitative and quantitative analysis remains a
significant need. As shown for the example of rat lung slices of animals
previously exposed to a nano-CeO2 aerosol, imaging techniques such as
ToF-SIMS – recently adapted to biological matrices – can provide a dis-
tinct identification and morphological characterization of particles in
vivo. Tools such as PIXE and neutron activation on the other hand enable
precise substance quantification in different organs and even within
cells. A targeted combination of such methods may allow for further
progress of categorization approaches and refinement of PBPK model-
ing and thus reduce animal testing. In the case of nano-CeO2, some bio-
transformation to ceriumphosphateNPs during the retention, primarily
in reticuloendothelial system organs, is indicated by results obtained
with intratracheal and intravenous administration.
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