

Do we need to validate existing methods for risk assessment of nanomaterials?

Rudolf Reuther NordMiljö AB Sweden

BAUA workshop on safe handling of nanomaterials at workplaces 27-28 November 2012, Berlin, Germany

Ca. 1.000+ nanotechnology based products on the market*

Increasing production, use and disposal of nanomaterials

Increasing exposure to society and the environment

Increasing occupational, consumer and environmental health risks

Increasing impact along the whole life cycle of ENMs

* Source: Project on Emerging Nanotechnologies (PEN), AOLNEWS, Gallery: Nano-Products Are Everywhere Mar 24,

➤ Last 10 years of nanosafety research shows that current measurement + testing methods:

- not accurate
- hardly reproducible
- mostly not validated
- high variation of biological responses
- endpoints + dose levels often not appropriate
- many false negatives + positives

Source: Hunt and Riediker 2011: Building expert consensus on problems of uncertainty and complexity in nanomaterial safety, NanoImpactNet

Non-validated methods ➤ high uncertainty of knowledge:

- hazard
- exposure
- dose-response
- bioavailability
- bio-persistence
- accumulation
- transport and fate

Due to method uncertainties, current RA and LCA are uncertain:

- not based on scientifically sound data
- not supported by robust validated methods
- > RA and LCA methods not reliable

Why do current measurement and testing methods hardly match nanomaterials?

- capture not unique physicochemical properties
- biological responses strongly related to these properties
- nano-bio-interactions highly depend on test media and environment conditions

OECD list of endpoints for pc properties:

- Agglomeration/ aggregation
- Water solubility / Dispersability
- Crystalline phase
- Dustiness
- Crystallite size
- Representative Electron Microscopy (TEM) picture(s)
- Particle size distribution dry and in relevant media
- Specific surface area
- Zeta potential (surface charge)
- Surface chemistry (where appropriate)
- Photocatalytic activity
- Pour density
- Porosity
- Octanol-water partition coefficient, where relevant
- Redox potential
- Radical formation potential
- Other relevant pc properties and material characterization information

From: Guidance Manual for the Testing of manufactured Nanomaterials:

OECD's Sponsorship L. Teamme; Fist Revision [ENV/JM/MONO(2009)20/REV].

New research confirms:

- fundamental importance of nanomaterial characteristics (surface metrics, charge, chemistry, dispersion, agglomeration/aggregation, surface adsorption ("corona") for biological effects
- type of test media and environment crucial
- translation of results from one to another NP form of the same nanomaterial inappropriate
- hazard differs from hazard associated with dissolved forms of the same material (as used in classical tox-tests)

Johnston et al. 2009

Why validated methods?

- If your methods are not validated, only you will know how good your method and results are!
- Validated methods tested in many laboratories on the same samples showing that the method is robust to produce comparable results in different labs and with different operators!
- Regulators and manufacturers can be sure that they compare "apples to apples"!
- Only validated methods prove compliance with regulatory standards!

Validated methods help:

- to obtain high quality and comparability of analytical results
- to get acceptable accuracy and precision
- to identify false positives or false negatives
- to assist method standardization and compliance with standards
- to allow accreditation of control laboratories
- to support classification and product labeling
- to facilitate registration + authorization (REACH)
- to provide EU wide harmonization of quality control systems

Validated methods based on:

- calibration
- recovery (labeling) experiments
- method inter-comparison (RR)
- investigation of robustness (RR)
- definition of parameters to be validated
- comparability of results

http://www.labcompliance.com/tutorial/methods/default.aspx

Validated methods improve:

- Accuracy
- Precision
- Specificity/selectivity
- Limit of detection
- Limit of quantitation
- Linearity and range
- Robustness (interlaboratory studies)
- Applicability to a wide range of different samples with specific properties and specific environmental and test conditions

U.S. EPA, Guidance for methods development and methods validation for the Resource Conservation and Recovery Act (RCRA) Program, Washington, D.C. (1995).,

Validation of methods includes:

- the whole assessment chain from design, fabrication, sampling, storage, transport and sample preparation until detection and quantification
- dispersion/agglomeration/aggregation control in test media
- exposure dose and condition control
- control of robustness by round robins to get a reproducible measure of uncertainty and variability of results

Urgent need

1

 Test, validate and further develop existing methods for fabrication, characterization and hazard assessment

2

 Develop reference methods and materials for synthesis, sampling/sample preparation, measurement, labeling, dispersion control and biological testing towards further standardization

3

• Develop reliable RA + LCA applicable to nanomaterials

NanoValid is addressing these needs:

Synthesize reproducibly stable nanomaterials and test conditions

Validate existing measurement + testing methods

Develop new reference methods + materials applicable to ENMs

Develop reliable RA and LCA approaches for ENMs

NanoValid

- NanoValid: Large-scale integrating collaborative project
- Title: "Development of reference methods for risk and life cycle assessment of engineered nanomaterials"
- Project number: 263147
- Consortium: 29 +1 partners from 17+1 countries
- ▶ Total budget: 13.3 mio. €
- ▶ Requested EC contribution: 9.6 mio. €
- Duration: 2011 to 2015
- Coordinator: Rudolf Reuther, NordMiljö AB, SE
- Project officer: Nicolas Segebarth, EU Commission
- Contact: www.nanovalid.eu

NanoValid: Consortium

Type of organization	Partners
University	University of Tampere FI , University of Salzburg AT , University of Zaragoza ES , University of Namur BE , University of Lublijana SI , Federal University of Minas Gerais BR , McGill University CA
Private-public research institution	Fraunhofer Gesellschaft DE , Helmholtz-Centre for Environmental Research DE , University of Birmingham UK , National Institute for R&D in Micro-technologies RO , National Institute for Chemical Physics and Biophysics EE , Indian Institute for Toxicology Research IN , Centre for Cellular and Molecular Biology IN
Governmental body	Federal Institute for Occupational Safety and Health DE , Federal Institute for Materials Research and Testing DE , German Institute for Standardization DE , National Institute of Metrology, Standardization and Industrial Quality BR , Swiss Federal Institute of Aquatic Science and Technology CH , National Research Centre for the Working Environment DK , US Environmental Protection Agency US (associated by LOI)
SME	Nanologica SE , Grimm Aerosol Technologies DE , Straticell BE , QUANTIS CH , Institute of Nanotechnology UK , Nordmiljö SE
Large industry	Centro Ricerche FIAT, IT, ARKEMA FR, Veneto Nanotech IT,

NanoValid: Countries

Austria (1)	India (2)
Belgium (3)	Romania (1)
Brazil (2)	Slovenia (1)
Canada (1)	Spain (1)
Denmark (1)	Sweden (2)
Estonia (1)	Switzerland (1)
Finland (1)	United Kingdom (2)
France (1)	United States (1) (associated by LOI)
Germany (6)	
Italy (2)	

NanoValid: Test Materials

Priority 1	Priority 2
metals (Ag, Au and Pd)	quantum dots (CdSe, CdS, CeO ₂)
metal oxides (SiO₂, TiO₂ , ZnO, CuO)	ceramics, nanoclays
CNT (SWCNT, MWCNT)	salts (Ca-phosphate, PbS)
fullerenes	nanocellulose
	polystyrene, dendrimers

Nano Valid work plan

WP7:
Dissemination
and exploitation

WP1+8: Project management + scientific coordination

WP2: Selection and fabrication of test materials and preliminary test of methods

WP3: Validation of selected measurement and testing methods

WP6: Case studies to assess the feasibility of validated methods

WP5: Development
of reference
methods and
certified reference
materials

WP4: Application of validated methods to improve risk (RA) and life cycle assessment (LCA)

Step 5 (WP6)

Assess feasibility of validated and established reference methods under "real" conditions

- Case study 1: assess occupational exposure of manufacturing
- Case study 2: develop online monitoring of airborne exposure
- Case study 3: study environmental behavior, fate + impact
- Case study 4: assess accidental risks associated with transport
- Case study 5: develop risk reduction strategies for handling
- **Case study 6:** improve nanosafety in the **automotive industry**.

Thank you!

EU Nanosafety cluster and Relevant ETPs

QNano

NanoValid

Marina NanoDevice National and International projects

Relevant stakeholders (industry, regulatory, standardization)

