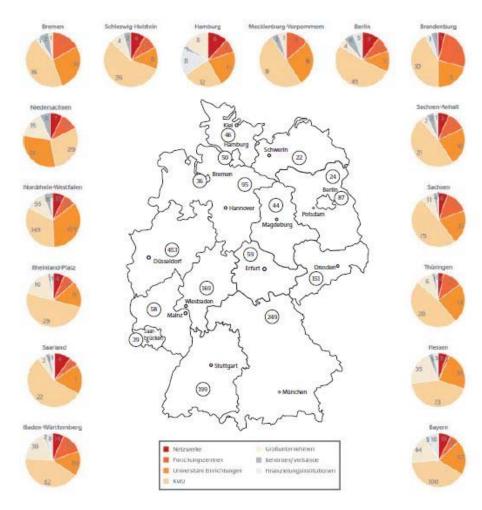


In the Next Couple of Minutes ...

- Challenges and Uncertainties
- National/European Situation
- Scope
- Categories of Nanomaterials
- Risk Assessment in the Workplace
- (Some) Conclusions

Challenges

- enabling technology
- cross-sectional
 - (very) diverse materials with heterogenous (toxicological) property profiles
- limited knowledge base
 - on labelling and classification
 - on exposure
 - on suitabilty of risk management measures
- highly dynamic technology field



Addressing Uncertainties

- several ongoing national/European R&D projects, e.g.
 - NanoGem
 - NanoSafe
 - NANODEVICE
 - NanoValid
- highly dynamic, "regulatory" environment, e.g.
 - publications by OECD, e.g. Compilation of Nanomaterial Exposure Mitigation Guideline Relating to Laboratories, 2010
 - publication on Control Banding by ANSES, 2010
 - guideline on CNTs published by Safe Work Australia, 2011
 - technical guidance by IVAM/RPA comissioned by EC, in progress


Nanotechnology Players in Germany

source: nano.DE Report, 2011

Nanotechnology Applications in Germany

source: nano.DE Report, 2011

Nanomaterials in the Market Survey in Germany

- more than 450 responses from R&D and industry
- SMEs mostly concerned (63% companies/institutes with 1-10 employees)
- 45% companies produce/process 1 or 2 nanomaterials only
 - industry reports 85 different nanomaterials
- R&D typically handle several nanomaterials
 - R&D reports 109 different nanomaterials (100 g 1 kg/year)
- but only few nanomaterials seem to have market relevance today
 - silica, titania, carbon black, CNTs, silver, gold

source: Federal Institute of Occupational Safety and Health, 2012

AGS Working Group Nanomaterials

- Dr. Au, Hessisches Ministerium für Arbeit, Familie und Gesundheit
 (member AGS UAII)
- Dr. Baron, BAuA
- Dr. Berges, IFA
- Dr. Csomor, RP Kassel
- Dr. Engel, BASF SE (chair)
- Dr. Felten, Berufsgenossenschaft für Transport und Verkehrswirtschaft
 (member AGS UAII)
- Herr Hackmann, University Bremen (member AGS UAIII)
- Dr. Lange, BASF SE
- Dr. Rühl, Berufsgenossenschaft der Bauwirtschaft
- Dr. Ronge, Volkswagen AG (\$\rightarrow\$ member AGS UAI)
- Dr. Sövegjarto-Wigbers, University Bremen (member AGS UAI)
- Dr. Wriedt, Beratungs- und Informationsstelle Arbeit & Gesundheit
 (member WPC)

Liaisons with Experts on Specific Topics

- hazard assessment supported by Prof. Gebel, BAuA
 (Chair of the AGS WG Fibres and Dust)
- Fire and explosion supporetd hazards by Dr. Dyrba, BG RCI and Dr. Scheid, BAM

Scope

- based on the categorization of the EC recommendation on the Definition of Engineered Nanomaterials, 2011
 - focus: liquid and solid substances in spray applications and which are dispersed/redispersed into workplace air
 - out of scope: natural and incidental nanomaterials
- specific guidance supplementing TGD 400 and TGD 402

focus: inhalation exposure

Required Information for the Risk Assessment in the Workplace

- specific information on the substance
 - classification of the nanoscale material
 - particle number distribution
 - specific surface area
 - morphological information
 - surface modification
 - information on dustiness behaviour
 - information on flammability
- information of the concerned operations

Proposed Categories of Nanomaterials

- soluble nanomaterials
- nanoscale, spherical, respirable inert dust
- 6 biopersistent nanomaterials with specific toxicological properties
- biopersistent, rigid, fibrous nanomaterials (complying with WHO criteria)

■ BASF The Chemical Company

Consequences in Practice

- soluble nanomaterials
 - no particulate effects
- 2 nanoscale, spherical, respirable dust
 - ⇒ safety factor 2 to be applied on the OEL for respirable, inert dust (TRGS 900: currently 3 mg/m³ for a dust density 2,5 MAK: 0,3 mg/m³ for a dust density 1)
- biopersistent nanomaterials with specific toxicological properties
 - individual hazard assessment, but (draft) OELs for many microscale bulk materials < 0,1 mg/m³</p>
- biopersistent, rigid, fibrous nanomaterials (complying with WHO criteria)
 - prevention, < 10.000 fibres/m³

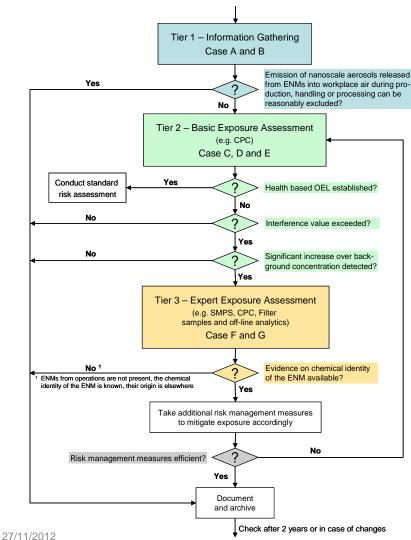
Risk Assessment in the Workplace Additional Disburdening Criteria Supplementing the Standard Risk Assessment

- solubility
- embedded in a solid matrix
- no/low-release formulations and operations/process steps
- exposure data
 - respirable dust fraction
 - for nanoscale, spherical, respirable inert dust
 - total particle number concentration
 - biopersistent nanomaterials without specific toxicological properties

Role of Exposure Assessment

Tiered Approach to Exposure Assessment of Nanoscale Aerosols

- combines
 - principles of exposure assessment of nanoscale aerosols with
 - established industrial hygiene practices
- step-by-step approach:
 - Tier 1: Information Gathering
 - Tier 2: Basic Exposure Assessment
 - focus: particle number concentration
 - ⇒ limited set of easy-to-use equipment (counting devices)
 - Tier 3: Extended Exposure Assessment
 - ⇒ latest state-of-the-art technologies (counting and sampling devices including off-line analyses)



BAuA, BG RCI, IFA, IUTA, VCI, TUD, Germany 2011

Role of Exposure Assessment

Tiered Approach to Exposure Assessment of Nanoscale Aerosols

16

Consequences for Risk Management Low/Very Low Air Concentrations Acceptable

- soluble nanomaterials
 - no particulate effects
- 2 nanoscale, spherical, respirable dust
 - ⇒ safety factor 2 to be applied on the OEL for respirable, inert dust (TRGS 900: currently 3 mg/m³ for a dust density 2,5 MAK: 0,3 mg/m³ for a dust density 1)
- biopersistent nanomaterials with specific toxicological properties
 - individual hazard assessment, but (draft) OELs for many microscale bulk materials < 0,1 mg/m³</p>
- 4 biopersistent, rigid, fibrous nanomaterials (complying with WHO criteria)
 - prevention, < 10.000 fibres/m³

Consequences for Risk Management Examples

- hierarchy of controls
- closed process steps
- efficient local exhaust ventilation (for open process steps)
- restricted access
- prevent dust deposition (high quality housekeeping)
- chemical protective gloves and suit, type 5
- respiratory protection, class P2 or P3

source: BASF SE

(Some) Conclusions

- established risk assessment concepts applicable
- principles for the evaluation of suitable controls not applicable due to limited data/knowledge
 - precautionary approach/preventive risk management measures
- additional, valid data/knowledge especially required on the
 - categorization of nanoplatelets and flexible nanofibres
 - efficiency of (technical controls and) PPE
 - •suitable concepts to guarantee air concentrations < 0,1 mg/m³
 - based on structured and harmonized R&D approaches

Safe and Professional Use in the Workplace

source: BASF SE