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Machine-driven  EEG  artifact  removal
through automated  selection  of ICs  is
proposed.
Feature  vectors  extracted  from  IC
via  image  processing  algorithms  are
used.
LDA  classification  identifies  range  fil-
ter  as  powerful  feature  (accuracy  rate
88%).
The  method  does not depend  on
direct  recording  of artifact  signals.
The  method  is not  limited  to  a  specific
number of  artifacts.
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a  b  s  t  r  a  c  t

Artifact  rejection  is a central  issue  when  dealing  with  electroencephalogram  recordings.  Although
independent  component  analysis  (ICA)  separates  data  in  linearly  independent  components  (IC),  the
classification  of  these  components  as  artifact  or EEG  signal  still  requires  visual  inspection  by  experts.

In this  paper,  we  achieve  automated  artifact  elimination  using  linear  discriminant  analysis  (LDA) for
classification  of  feature  vectors  extracted  from  ICA  components  via  image  processing  algorithms.

We compare  the  performance  of  this  automated  classifier  to  visual  classification  by  experts  and  identify
range  filtering  as a feature  extraction  method  with  great  potential  for  automated  IC artifact  recognition
(accuracy  rate  88%).  We  obtain  almost  the  same  level  of recognition  performance  for  geometric  features
and local  binary  pattern  (LBP)  features.

Compared  to the existing  automated  solutions  the  proposed  method  has  two  main  advantages:  First,
it  does  not  depend  on  direct  recording  of  artifact  signals,  which  then,  e.g.  have  to be subtracted  from  the
contaminated  EEG.  Second,  it is  not  limited  to  a specific  number  or type  of  artifact.

In  summary,  the  present  method  is  an automatic,  reliable,  real-time  capable  and  practical  tool  that
reduces  the  time  intensive  manual  selection  of  ICs  for  artifact  removal.  The  results  are  very promising
CA despite  the  relatively  small  channel  resolution  of  25  electrodes.
ublis
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. Introduction

The electroencephalogram (EEG) as a multi-channel signal of
euronal brain activity can reflect brain states linked to the mental
ondition of a person. Due to its temporal resolution, it is an excel-
ent and widely used technique for investigating human brain func-
ioning. A major problem though is the contamination of the EEG
ignal by various physiological and non-biological artifacts such as
ye movements, blinks, muscle activity, heartbeat, high electrode
mpedance, line noise, and interference from electric devices.

The discarding of entire EEG segments due to noise is a widely
pplied method in research settings and results in the loss of exper-
mental data. This becomes especially problematic if only a few
pochs are available and artifacts such as blinks or movements
ccur too frequently. Moreover, this approach is inappropriate
hen working with the continuous EEG and non-event-locked

ctivity (Vanhatalo et al., 2004), long-range temporal correlations
Linkenkaer-Hansen et al., 2001), real-time brain–computer inter-
ace (BCI) applications, and online mental state monitoring (Jung
t al., 2000). Other proposed methods for artifact rejection are based
n regression in the time or frequency domain (Kenemans et al.,
991). They concentrate mainly on removing ocular artifacts (Jung
t al., 2000), may  themselves introduce new artifacts into the EEG
ecording (Weerts and Lang, 1973; Oster and Stern, 1980; Peters,
967), and are unsuitable for real-time applications (Jung et al.,
000). A review of BCI-system artifact reduction techniques is given
y Fatourechi et al. (2007).

A promising method which has established itself as an impor-
ant part of EEG analysis is the application of independent
omponent analysis (ICA) for data decomposition (Jung et al., 2000;
akeig et al., 1996) and separation of neuronal activity from arti-

acts (Fitzgibbon et al., 2007; Romero et al., 2008). The idea central
o this method is that the EEG signal is a mixture of linearly indepen-
ent source components (IC) that can be separated by ICA, visually
xamined, and classified as artifact or EEG signal components. Once
he artifact components have been identified, they can be removed
nd the remaining EEG signal components can be projected back to
he original time domain. This procedure yields the reconstruction
f an artifact-free EEG.

The examination and classification of the ICs is time-consuming
nd requires the rater to have experience and knowledge for deci-
ion making. Viola et al. (2009) and Mognon et al. (2010) both

orked on mitigating this difficulty by developing an EEGLAB plug-

n for finding artifact ICs. The first relies on a user-defined template
hile the second is completely automatic but limited to four arti-

acts (Jung et al., 2000; Mognon et al., 2010).

ig. 1. Examples of similar IC artifact patterns despite the different EEG channel configura
rom  a 30 channel configuration.
nce Methods 243 (2015) 84–93 85

However, EEG data contain an array of artifacts with unknown
properties. Hence, there is a further need to develop fully auto-
mated machine classification, e.g. of the independent components,
for automatic artifact elimination that can deal with all kinds of
artifacts.

The idea underlying our method is inspired by the observation
of experts during visual classification. For this process they visually
inspect the 2D scalp map  projections of the ICs, called topoplots.
Based on the topoplots’ image pattern and on the experts’ know-
how, they decide if the IC is an artifact or an EEG signal component.
Computer vision aims at imitating the abilities of human vision by
electronically perceiving and understanding an image for further
decision making. Hence, we introduce in this paper a new method
for artifact rejection based on machine classification of features
derived from topoplot images by applying image processing algo-
rithms for improving performance. Image features can be extracted
through range filtering, local binary patterns (LBP) that are orig-
inally used as texture features, and geometric approaches like
Gaussian curvature. These methods are commonly used in the con-
text of 2D object recognition and include information from the
entire image. Combined with a classification method such as linear
discriminant analysis (Moghaddam et al., 2000), they can enhance
the recognition performance of automated artifact elimination.
This groundbreaking method does not depend on direct recording
of artifact signals, neither it is limited to a specific number or type of
artifact. An additional advantage of this novel method is its adapt-
ability to an arbitrary number of EEG channel configurations. This
is due to the nature of the topoplots, which are generated by inter-
polating the ICA mixing matrix columns onto a fixed-size grid (in
our case: 51 × 63). This interpolation step enables the projection
of different numbers of EEG channels and different EEG channel
positions on the same grid, precisely by generating images of iden-
tical dimension. This permits the classification of images derived
from ICs composed of varying column lengths of the mixing matrix,
independent of not only the number but also the position of the
channels utilized. Re-training the classifier for any further investi-
gations using any other number of channels or any other channel
positions is therefore redundant. This can be recognized by looking
at Fig. 1. It clearly illustrates the pattern similarity of IC images per
artifact despite their different EEG channel configurations.

2. Materials and experiments
The data acquisition took place in the shielded lab of the Federal
Institute for Occupational Safety and Health in Berlin. The exper-
iment was fully carried out with each subject in a single day. It

tions. First row: IC images from a 25 channel configuration; second row: IC images
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Fig. 2. Pro

onsisted of two components: a training phase and the main exper-
ment. During the training phase subjects were familiarized with
he cognitive tasks, which were identical to the main experiment
ut with shorter duration. An EEG signal was not recorded at this
tage. The main experiment started after a short break subsequent
o the training phase. The EEG was captured during the main exper-
ment by 25 electrodes arranged according to the 10–20 system.
ata were recorded with reference to Cz and at a sample rate
f 500 Hz. For signal recording we used an amplifier from Brain-
roducts GmbH and their BrainRecorder software. The tasks were
resented in a counterbalanced order and were controlled remotely
y means of a remote desktop connection, an intercommunication
ystem, and a video monitoring system.

The sample consists of 57 people in paid work and shows high
ariability with respect to cognitive capacity and age. Table 1
escribes the sample set used.

The various cognitive tasks were realized through the imple-
entation of a task battery in the E-Prime application suite

Psychology Software Tools, Pittsburgh, PA). The battery consists
f nine tasks with diverse complexity and difficulty that reflect
he following executive functions: shifting between tasks, updating
nd monitoring working memory representations, and inhibition of
ominant responses. The implemented tasks are listed in Table 2
nd explained in general in Wikipedia (2014a,b,c,d) and Unsworth

t al. (2005). Furthermore, we recorded the EEG during a short
eriod of relaxation at the beginning and at the end of the main
xperiment.

able 1
ample set.

Age Female Male Total

30–39 7 7 14
40–49 12 13 25
50–59 9 2 11
60–62 3 4 7

Total 31 26 57
g pipeline.

3. Methods

We  implemented a MATLAB toolbox consisting of three main
modules for pre-processing, feature generation, and classification.
To train the classifier, we  used visual ratings of the topoplots
from two  experts. The algorithm then automatically classified the
ICs, based either on the new generated image features or the
post-processed topoplots. Artifact components are discarded from
subsequent processing. Components classified as EEG components
are projected back, and in this way reconstruct an artifact-free EEG
signal. Fig. 2 summarizes this processing pipeline and is described
in-depth in the following.

3.1. Pre-processing

All recorded EEG signal data were imported into MATLAB (Math-
Works, R2012b). In our case, the 25 recorded EEG channels were
saved in one file per task and per person. The signals were mul-
tiplied with a Hamming window function and filtered with a
band pass filter (order 100) between 0.5 and 40 Hz. Subsequently,
independent component analysis (Infomax algorithm) was  applied
to the 25-channel EEG signal (Makeig et al., 1996; Delorme and
Makeig, 2004):

W · x = u (1)

with x is the signal of scalp EEG channels, W the unmixing matrix
and u the sources (ICs).

In that way, our multi-channel data were decomposed into 25
ICs. Each of the 25-element column vectors of the 25 × 25 ICA mix-
ing matrix W−1 was  interpolated onto a 51 × 63 grid using the
inverse distance method of Sandwell (1987). They form the 25 two-
dimensional scalp projection maps, here referred to as topoplots.
The first plot on the left of Fig. 3(a) illustrates the interpolation on a

fine, rectangular Cartesian grid. Examples of such images without
the background are depicted in Fig. 5, where a set of topographic
maps of the scalp data field are presented in a 2D circular view. The
25 computed ICs are characterized by their activations (the sources’



T. Radüntz et al. / Journal of Neuroscience Methods 243 (2015) 84–93 87

Table  2
Task battery reflecting executive functions.

Task 0-Back 2-Back Sternberg Serial Sternberg Stroop

Duration (min) 5 5 10 10 5

t
a
o

v
E
l
h
i

b
e
o
o
r

3

f
r
d
r
v
t

3

e
r

3
t
a

F
(

Task  Switch PAR Switch NUM 

Duration (min) 5 5 

ime course), their activity power spectrum calculated with FFT,
nd their 2D scalp component maps (interpolated from the columns
f the mixing matrix).

All topoplots in combination with their power spectra were
isually inspected and rated by two experts as either an artifact or
EG signal component (Fig. 5). Altogether, 15 625 topoplots were
abeled, 46% as signal vs. 54% as artifact. Each of the experts rated
alf of the topoplots. These labels were used later for system train-

ng and classification.
Because of the time-consuming procedure and the large num-

er of topoplots to be rated, it was impossible to find more willing
xperts for labeling. This fact illustrates once more the necessity
f an automated solution. However, we compute the correlation of
ur experts’ labeling on a sub-sample of 5500 topoplots that were
ated by both. They achieved an agreement of 92.8%.

.2. Feature generation

The feature generation module consists of algorithms for image
eature extraction. Furthermore, it comprises post-processing algo-
ithms that can be applied to the generated features but also
irectly to the topoplot images. Post-processing algorithms aim to
educe computational effort based on image downsampling and
ectorization. In this way, they contribute to enhancing classifica-
ion performance.

.2.1. Image feature extraction
Image feature extraction generates features that can be gen-

rally categorized in three groups: texture features, gradient and
ange features, and geometric features.
.2.1.1. Local binary pattern (LBP). LBP is a powerful feature for 2D
exture classification first described in 1994 (Ojala et al., 1994)
nd refined later in Ojala et al. (1996). The LBP feature values are

ig. 3. Examples of feature images generated from the topoplot image (top left) using im
c)  gradient, range, and geometric features.
Switch XXX AOSPAN Relaxation (start, end)

10 20 3 + 3

computed by building the differences between each pixel and its
neighbors P ∈ {8, 16, 24} within a prescribed radius R. If the center
pixel is greater than its neighbor we note a 1, else a 0, so that the
relation to the neighbors is binary coded. In the case of P = 8 neigh-
bors, we obtain an eight-digit binary number that can be converted
into a decimal number. This constitutes the new value of the central
pixel.

A rotation-invariant alternative of the LBP method is described
by Ojala et al. (2002). Here, the digits of the binary number are
shifted until a minimal value is created. Another variant is the uni-
form LBP, where thresholding is used to replace rare feature values
with a single value. A combination of both results in a rotation
invariant, uniform LBP feature.

Huang et al. introduced the 3D LBP method, which computes
four distinct LBP layers (Huang et al., 2006). Here coding is done
not only for whether the central pixel is less or greater than its
neighbor but also for the value of the differences themselves. In a
four bit word the sign of the difference is tracked in the first bit
and its value in the remaining three bits. In each LBP layer (sign
layer, first bit layer, second bit layer, third bit layer) we  set the
corresponding decimal value at the position of the central pixel.

We implemented and tested all LBP variants described here on
the topoplot images and presented the results in Section 4. Some
examples of the LBP feature images are presented in Fig. 3(a) and
(b).

3.2.1.2. Gradient images, range filter and Laplacian. We  also evalu-
ated the recognition performance of several gradient features. The
horizontal Sobel operator (HSO) is obtained by spatial convolution
with the filter mask
HSO =

⎛
⎝ −1 0 1

−2 0 2

−1 0 1

⎞
⎠ (2)

age processing algorithms introduced in the main text: (a, b) texture features and
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nd detects vertical edges. To compute the horizontal derivative,
ypically a 2 × 1 kernel is applied that calculates the difference of
wo pixels. The large horizontal gradient operator (LHG) detects
orizontal range differences over a greater horizontal distance.
eseltine et al. tested a variety of image processing techniques

or face recognition and identified the LHG operator as the most
ffective surface representation and distance metric for use in
pplication areas such as security, surveillance, and data compres-
ion (Heseltine et al., 2004). In consideration of this, we  decided to
se their recommended size of 5 and compute the LHG via the filter
ask

HG =
(

−1 0 0 0 1
)

(3)

We also tested the range filter, which takes the difference
etween the maximal and minimal value for each topoplot image’s
ixel in a 3 × 3 neighborhood (Bailey and Hodgson, 1985). In addi-
ion, we applied the Laplacian operator as a second order feature.

Fig. 3(c) illustrates examples for gradient images, range filtering
nd the Laplacian operator.

.2.1.3. Gaussian curvature. The Gaussian curvature belongs to the
eometric features and is defined as follows. The curvature K of a
oint on a surface is the product of the principal curvatures k1 and
2:

 = k1 · k2 = 1
r1

· 1
r2

(4)

ith main curvature radius r1 and r2.
We  implemented the Gaussian curvature of the topoplot sur-

ace points as a further feature and tested its classification accuracy
Horn, 1984). An example is shown in Fig. 3(c).

.2.2. Post-processing
Each feature image consists of 51 × 63 = 3213 pixels. We  cropped

he inner area containing the scalp map  and discarded the frame,
hus obtaining 1489 pixels (approx. 46% of the original feature
mage). We continued downsampling the image by selecting either
ach second pixel in horizontal and vertical direction (4:1), each
hird (9:1), or each fourth (16:1) pixel. In this way, we generated
eature images with 372 pixels for the 4:1 alternative (approx.
1.58% of the original feature image), 164 pixels for the 9:1 alterna-
ive (approx. 5.10% of the original feature image) and 94 pixels for
he 16:1 alternative (approx. 2.93% of the original feature image).
he main purpose of downsampling was to investigate how much
ixel information is still needed for achieving reasonably good clas-
ification results and to possibly reduce computational effort for
he classification. For the sake of convenience we  transformed the
mage matrix in a feature vector for further classification.

.3. Classification

We  used linear discriminant analysis (LDA) as an easily compre-
ensible and reproducible method for classification. LDA, a widely
sed method for face recognition (Kong et al., 2015), image retrieval
Swets and Weng, 1996), text classification (Ye et al., 2004), etc. was
pplied to all computed features. LDA minimizes the within-class
ariance SW while maximizing the between-class variance SB by
omputation of the projection matrix WLDA.

W =
C∑

i=1

li∑
n=1

(xin − mi) · (xin − mi)
T (5)
B =
C∑

i=1

li · (mi − m)  · (mi − m)T (6)
nce Methods 243 (2015) 84–93

with C is the number of classes, mi the mean of class i and li the
number of samples in class i. Hence the ratio of SB to SW has to be
maximized for maximal separability of the classes:

WLDA = argmaxW

∣∣WT · SB · W
∣∣∣∣WT · SW · W
∣∣ (7)

In contrast to principal components analysis (PCA), LDA  aims to
maximize the class-discriminatory information. Hence, it provides
class separability and a decision boundary between the classes
by computing the axes’ directions that maximizing the separation
between them. Euclidean distance is used to classify the data.

A well-known challenge of LDA for many applications is that
it requires the within-class covariance matrix to be nonsingular,
which is not always given. In order to overcome the possible singu-
larity of SW, several approaches have been proposed (Swets and
Weng, 1996; Dai and Yuen, 2003; Kong et al., 2015) including
computation of the pseudo-inverse LDA (Raudys and Duin, 1998;
Skurichina and Duin, 1996). The latter approach was used for this
work whenever the computation of the inverse failed.

Altogether, the data consist of 625 sets (subjects × tasks) with 25
topoplots in each set. We  randomly selected 60% of the sets for the
training and the remaining 40% for testing. Hence, for each feature
generation method applied we used 9375 image feature vectors
(375 sets) for training the classifier and 6250 image feature vectors
(250 sets) for testing it. In addition to the features generated, we
also trained and classified the topoplots themselves.

4. Results

We  evaluated our artifact removal algorithm by means of a close
inspection of the classification results, the signal-to-noise ratio and
the performance time. While the first two are standard for the
assessment of performance, the performance timing accounts for
the real-time feasibility of the algorithm.

4.1. Classification results

Determination of the minimum number of eigenvectors was
done for each feature and sampling rate. The main purpose was
to reduce computational effort. The identification of this minimum
was done empirically using the receiver operating characteristic
(ROC) curve (Fig. 4) which illustrates quite well the performance of
a binary classifier system as its discrimination threshold is varied.
Hence, it provides a way  to select possibly optimal models and to
discard suboptimal ones. Based on our ROC analysis of diagnostic
decision making, a cut-off of 70% of the total number of eigenvec-
tors, sorted in descending order by the size of their eigenvalues, was
set as threshold. The entire classification procedure with random
selection, training and testing was cross validated by executing it
50 times for each feature. Results were averaged and the variance
was calculated (Table 3).

To further validate our results, we  compared the recognition
rates from the LDA with 70% of the total number of eigenvectors
(Table 3) with the classification results from an LDA classifier with
all eigenvectors. The extremely small differences (in the range of
0–0.7%) in the recognition rates between the two  systems suggest
the use of the 70%-classifier in favor of a minimal computing time,
which is always advantageous when dealing with the development
of real-time systems.

The recognition rates for feature images vary between 73% for
the fourth layer of 3D LBP and 88% for range filter. Downsampling

of the feature images does not have a large impact on most of the
features’ accuracy rates. Looking at Table 3 we  notice as expected
that recognition rates decline differently. They decline least for
the topoplots, the range filter and the Gaussian curvature. They
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ig. 4. Dependence of recognition rates on amount of eigenvectors used for each of
6:1); the vertical line indicates the cut-off by 70% of total number of eigenvectors 

ecline most for the uniform, rotation invariant LBP computed for
6 neighbors and for the rotation invariant LBP computed for eight
eighbors, both suffering from downsampling on the order of 4–8%.
his appears reasonable when looking at Fig. 3(b).

Additionally, by applying dimensionality reduction, we not only
ried to reduce the computational costs of classification but also
ested for over-fitting. In general, dimensionality reduction can
elp minimize the error in parameter estimation due to redundant

nformation (the curse of dimensionality, also known as the Hughes
ffect in machine learning).

For improving classification we also mixed different kinds of fea-
ures (e.g. 3D LBP (1st/2nd) and Laplacian, Laplacient and Gaussian

urvature, range filter and gradients, etc.) but the results did not
utperform the 88% recognition rate of range filter alone.

On a final note, we  considered benchmarking our algorithm
ith an existing removal method implemented in EEGLAB. Two

able 3
ecognition rates of features tested: mean (%) over 50 cross-validated results and varianc

Sampling 1:1 

Eigenvectors 1042 

Features
Topoplots 86.6 (0.16) 

3D  LBP (1st) 78.4 (0.20) 

3D  LBP (2nd) 85.1 (0.14) 

3D  LBP (3rd) 80.3 (0.12) 

3D  LBP (4th) 74.5 (0.21) 

LBP  rotation invariant, 8 neighbors 79.3 (0.25) 

LBP  uniform, 8 neighbors 78.6 (0.16) 

LBP  uniform, 16 neighbors 79.3 (0.21) 

LBP  uniform, rotation invariant, 8 neighbors 78.3 (0.20) 

LBP  uniform, rotation invariant, 16 neighbors 80.1 (0.15) 

LHG  87.9 (0.10) 

HSO  87.8 (0.11) 

Range  filter 88.0 (0.10) 

Laplacian 87.9 (0.11) 

Gaussian curvature 86.3 (0.13) 

ecognition rates greater than 88% in bold.
5 features (subplots) and the four sampling rates (blue 1:1, green 4:1, red 9:1, cyan
vectors are sorted by the size of their eigenvalues).

of the best-known EEGLAB implementations for artifact removal
are ADJUST (Mognon et al., 2010) and CORRMAP (Viola et al.,
2009). ADJUST distinguishes between stereotyped artifacts (e.g.
ocular eye movements, blinks, heart beats) and non-stereotyped
artifacts (e.g. movements, external sources). The authors note in
their tutorial (Buiatti and Mognon, 2014) that ADJUST aims to
automatically identify and remove components of the stereotyped
artifacts, while the non-stereotyped artifacts are problematic:
“ADJUST does not attempt to remove these artifacts and relies
on a suitable pre-processing for removing them before the ICA
decomposition” (Buiatti and Mognon, 2014). They advise the users
to “remove from the continuous data all segments containing

paroxysmal artifacts” (Buiatti and Mognon, 2014), after filter-
ing. Due to this pre-processing step of segments’ removal we
deemed ADJUST as inappropriate for benchmarking. We  then
switched over to CORRMAP, ran it in automatic mode, and manually

e (in parentheses).

4:1 9:1 16:1
260 114 65

86.6 (0.17) 86.5 (0.17) 86.7 (0.19)

78.0 (0.16) 78.1 (0.16) 77.0 (0.25)
84.9 (0.16) 85.3 (0.17) 84.6 (0.16)
80.1 (0.11) 80.4 (0.12) 79.8 (0.11)
74.0 (0.18) 74.2 (0.22) 73.5 (0.22)

76.4 (0.23) 74.0 (0.14) 71.5 (0.28)

78.7 (0.18) 78.4 (0.15) 77.8 (0.17)
79.4 (0.22) 79.0 (0.19) 78.3 (0.25)

78.0 (0.22) 78.0 (0.20) 77.1 (0.22)
79.1 (0.14) 79.1 (0.19) 77.6 (0.27)
87.7 (0.11) 87.5 (0.14) 87.6 (0.09)

87.7 (0.13) 87.5 (0.10) 87.4 (0.12)
88.1 (0.09) 88.0 (0.11) 87.8 (0.11)
87.6 (0.10) 87.0 (0.12) 86.8 (0.14)

86.2 (0.18) 86.0 (0.16) 86.1 (0.15)
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appended one after another, resulting in one long signal for each
person, and the SNREXP and SNRM were computed for each elec-
trode. Results were averaged over the subjects.
Fig. 5. Example of a complete IC set of 25 topoplots with one expert’s labeling

rovided artifact templates as requested by the system. We  tested
50 ICs and achieved a 62% agreement with the experts’ ratings.
he CORRMAP results are not surprising due to CORRMAP’s focus
n eye blinks and lateral eye movements, as mentioned by the
uthors (Viola et al., 2009). CORRMAP similar to ADJUST is engi-
eered to capture in particular stereotyped artifacts like blinks,
ye movements and/or heart beats. Their acknowledged lack of
bility to capture non-stereotyped artifacts is a challenge that we
ccept.

.2. Signal-to-noise ratio

After automated classification, the components classified
s artifact were discarded from the subsequent process. The
emaining ones, classified as signal components, were back
rojected. The result is the machine de-noised signal. A repre-
entative complete IC set of 25 topoplots is shown in Fig. 5.
he expert’s labeling is printed above each topoplot. Diverg-
ng machine ratings are circled in gray, e.g. the image in the
hird row, third column was classified by the machine as arti-
act. For the sake of completeness, we should mention that
ur experts used the activity power spectrum as additional
nformation for the classification procedure. An example of the
riginal band pass filtered signal of electrode Fp1, the expert
e-noised signal, and the signal de-noised automatically using
ange filtering (sampling 9:1) is shown for one subject in
ig. 6.

We  used the signal-to-noise ratio (SNR) as a criterion to charac-
erize the quality and similarity of the artifact rejection procedure
hen comparing the experts’ visual classification with the image
attern approach. SNR values were computed on the basis of the

efinition in Strutz (2000).

NR = 10 · log10

(
�2

x

�2
e

)
(dB) (8)
ed on the top of each topoplot. Diverging machine ratings are circled in gray.

with �2
x is the variance of the signal and �2

e the variance of the noise.
For zero mean signals as is the case here, this results in

SNR = 10 · log10

∑N
(i=1)x

2
i∑N

(i=1)(si − xi)
2

(9)

with N is the number of sample points, xi the noise reduced signal
at time i, and si the band pass filtered signal at time i.

For the noise signal in the denominator, we employed the same
value for the expert de-noised SNREXP and the machine de-noised
SNRM. Hence, we  used as residual noise for both SNR calcula-
tions the difference between band pass filtered signal and experts’
noise reduced signal. Under this assumption the performance of
both approaches can be compared. The signals of each task were
Fig. 6. Band pass filtered signal of electrode Fp1 (red) with a pronounced eye-blink
artifact. Expert de-noised signal (blue) and automatically de-noised signal (green)
by  range filtering (sampling 9:1) without the artifact.
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Table  4
Performance times for the processing pipeline.

Pre-processing Band pass filter 0.164 s
ICA 4.731 s

Feature generation Topoplot 0.121 s
Range filter 0.002 s
Feature postprocessing 0.00007 s

Classification Training (offline) 1:1 (worst case) 1.7 s
16:1 (best case) 0.025 s

Testing (online) 1:1 (worst case) 0.03 s

Fig. 7. SNR maps (group average) for expert de-noising and for the machine based
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e-noising of four selected features (sampling 9:1).

The SNR range is very low, from −9.8 to 9.8 dB, well within the
ange found in the literature. SNRs are, as expected, lower in the
rontal areas (Goldenholz et al., 2009; Mishra and Singla, 2013) that
re contaminated by eye artifacts. The difference between SNREXP
nd SNRM is almost zero indicating that we achieved similar qual-
ty between expert based and machine based de-noising. SNR scalp

aps for experts’ noise reduced signal and for de-noising of four
elected image features are shown in Fig. 7. They illustrate the
imilarity of the time-consuming, manual classification for arti-
act rejection and the automatic, machine de-noising for all EEG
hannels averaged over subjects and tasks.

.3. Performance time

We  tested our system on an Intel Core i5-3320M Processor
2.6 GHz) with 8 GB DDR3-SDRAM (2 × 4 GB). As minimum input
ignal for performance time testing of the algorithm we  chose a
hort 25-channel-EEG signal of 94.34 s (500 Hz sample rate). The
election was made with reference to the fact that the ICA compu-
ation forms the bottleneck for the system’s timing performance
nd depends on the signal length. According the EEGLAB Wiki
utorial (Delorme and Makeig, 2014) finding N stable components
equires more than kN2 data sample points (N denotes the number
f EEG channels, N2 is the number of weights in the ICA unmix-
ng matrix, and k is a multiplier that increases as the number of
hannels increases). Hence, in our case the pre-processing module
eeds approx. 5 s for filtering and performing ICA, while the gen-
ration of one feature takes only 2.7 ms.  System training can be
one offline and actually does not need to be considered for the

valuation of real-time performance. However, for the 9375 image
eature vectors used, the computation time was  quite small and
aried between 1.7 s (1:1 image, worst case) and 0.025 s for the
ownsampled image (16:1 image, best case). Classification testing
16:1 (best case) 0.002 s

of one image feature vector needs in best case only 0.002 s and
in worst case 0.03 s. Table 4 outlines the performance times and
demonstrates that the system is real-time capable.

As a side note, we call attention to hardware-level program-
ming, which can enhance timing performance of the pre-processing
module, in particular by consideration of parallelism inherent in
hardware design.

5. Conclusions

In this paper we  described a novel approach for robust, auto-
mated EEG artifact rejection inspired by computer vision. It is based
on machine classification of ICs as artifact or EEG signal via fea-
tures gained with image processing algorithms. We  implemented,
tested, and validated several image features, e.g. range filter, local
binary patterns, and geometric features (Fig. 3). Linear discrimi-
nant analysis was applied for classification. Accuracy rates as well
as signal-to-noise ratios were calculated for assessing the features’
achievement potential.

Existing methods rely either on a user-defined template or
are limited to a few artifacts (Viola et al., 2009; Mognon et al.,
2010; Jung et al., 2000). Practitioners on the other hand well
know that real-world EEG data contain an array of artifacts with
unknown properties. Our goal therefore was  to develop an auto-
mated method capable of distinguishing between the pure EEG
signal and all types of artifacts. One could suggest a simpler
approach that uses just the columns of the mixing matrix instead of
their interpolation onto a fixed-size grid (topoplots). To justify our
method, we conducted classification tests utilizing only the mixing
matrix columns and received recognition rates of 87.7%. Indeed, the
result does not outperform the 88% recognition rates of range fil-
ter but supports our idea of using the interpolated images, which
inherently utilize the columns of the mixing matrix to train our
classifier. The major difference between both procedures is that our
approach is universal. This means: it is independent of the number
of used EEG channels, it performs for any EEG channel positions, and
it does not need to be retrained anymore. In this paper we want to
highlight all these additional advantages arising from our method’s
adaptability to an arbitrary number of EEG channel configurations
that constitute its universality. It is worth pointing out that experts
generally proceed during visual classification of the topoplots with-
out taking into account the number of EEG channels used. This fact
supports our approach of using the 2D scalp map projections of
the ICs instead of the mixing matrix columns. In short, the spatial
pattern of the image contains information crucial for the experts’
decisions.

Currently, we are working on evaluating our method by testing
it with EEG data from another lab. This EEG data has a different

EEG channel setup, it is conducted with another EEG registration
system, and its experimental setting and tasks differ from ours as
well. Nevertheless, the classifier trained with our data will not in
any way  be retrained on the new EEG data. Specifically, this means
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hat neither the large number of topoplots nor the time-consuming
rocedure for expert ratings is required for the purposes of re-
raining the classifier. The results will be presented in a future
aper.

To conclude, we achieved robust, automatic, and real-time
ecognition performance with a best recognition rate of 88% for
ange filtering, which is very good compared with the currently
xisting methods. Furthermore, the proposed method is not limited
o specific types of artifacts and can be applied online over different
xperiments and subjects. It is known that manual classification by
xperts can slightly differ between each other (Winkler et al., 2011).
ence, the differences of the SNRs between expert and machine
e-noising are extraordinarily good. However, for more accurate
lassification results an average rating between more than two
xperts should be considered for successful system training. To
educe computational effort downsampling can be applied without
oss of classification accuracy.

In summary, the presented method is an automatic, reliable,
eal-time capable, and practical tool that reduces the time-
ntensive manual selection of ICs for artifact removal. The results
re very promising despite the relatively small channel resolu-
ion of 25 electrodes. We  expect an improvement of the algorithm
y combining the image features with frequency information
nd applying non-linear classifiers (e.g. support vector machine).
his will be done in future work and presented in a separate
aper.
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