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1.  Introduction

An electroencephalogram (EEG) provides information about 
the neuronal activity in the brain, and thus the mental state of 
a person. EEG analysis is a widely used tool with a number 
of applications. EEGs are very important for investigating the 
functioning of the human brain, but users should be aware that 
they are affected greatly by artifacts. The causes of biological 

artifacts may include eye movements, blinks, muscle activity, 
and the heartbeat. Technically induced artifacts can be caused 
by faulty electrodes, high electrode impedance, line noise, and 
interference from electric devices. The correct interpretation 
of EEG traces is only possible if all of these artifacts are elimi-
nated before their analysis.

The previously proposed methods for artifact rejection 
have various disadvantages. Discarding contaminated EEG 
segments based on visual and manual inspections can lead to 
severe losses of experimental data, and these approaches are 
completely inadequate when working with continuous EEG 
in brain-computer interface applications or online mental 
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Abstract
Objective. Biological and non-biological artifacts cause severe problems when dealing 
with electroencephalogram (EEG) recordings. Independent component analysis (ICA) is a 
widely used method for eliminating various artifacts from recordings. However, evaluating 
and classifying the calculated independent components (IC) as artifact or EEG is not fully 
automated at present. Approach. In this study, we propose a new approach for automated 
artifact elimination, which applies machine learning algorithms to ICA-based features.  
Main results. We compared the performance of our classifiers with the visual classification 
results given by experts. The best result with an accuracy rate of 95% was achieved using 
features obtained by range filtering of the topoplots and IC power spectra combined with 
an artificial neural network. Significance. Compared with the existing automated solutions, 
our proposed method is not limited to specific types of artifacts, electrode configurations, 
or number of EEG channels. The main advantages of the proposed method is that it 
provides an automatic, reliable, real-time capable, and practical tool, which avoids the need 
for the time-consuming manual selection of ICs during artifact removal.
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state monitoring [1]. Independent component analysis (ICA) 
is a widely used method for eliminating various artifacts from 
recordings [2], where the artifact components are then dis-
carded and the EEG components are projected back, thereby 
reconstructing an artifact-free signal. However, the process of 
evaluating and classifying the calculated independent comp
onents (ICs) as artifact or EEG is not fully automated at 
present. Indeed, the previously proposed methods can intro-
duce new artifacts into EEG recordings [3–5] or concentrate 
on specific artifact types [6, 7]. Thus they are unsuitable for  
real-time applications [8].

To overcome most of these problems, we developed a new 
method for artifact elimination based on fully automated IC 
classification. This new method was inspired by observations 
of experts during visual examinations of topoplots, i.e. two-
dimensional scalp map projections obtained after the applica-
tion of ICA to EEG recordings. Hence, in order to evaluate the 
EEG quality after artifact removal, we compared the agree-
ment between the component ratings given by experts and 
the automated ratings obtained using our method. Thus, we 
obtained direct information about the artifact removal quality 
of our method.

In a previous study [9], we described some preliminary 
research into the extraction of ICA-component features using 
image processing algorithms, where we evaluated several 
operators in terms of their ability to characterize the typ-
ical topoplot image patterns of different artifacts (figure 1, 
see [2]). A comparison of 13 different image processing oper-
ators showed that the best performance was obtained using 
the so-called feature images computed by applying the hori-
zontal Sobel operator (HSO), large horizontal gradient oper-
ator (LHG), range filter, second layer of the three-dimensional 
local binary pattern (3D LBP (2nd)), and Gaussian curvature.

Using these six preselected features we aimed to estab-
lish a complete system for artifact elimination, which is fully 
automatic with real-time capability. In this study, we describe 
our approach to achieving this goal. In the proposed method, 
we identify the most suitable feature image and combine 
it with the typical EEG frequency bands obtained from the 
power spectrum of the IC. We give details of the procedures 
required to select a classifier and we test and compare several 
machine learning algorithms for classifying artifacts. Finally, 
we identify the classifier with the highest agreement rates 
relative to a human expert. We benchmark our findings based 
on comparisons with the existing removal methods called 
ADJUST [10] and CORRMAP [11].

2.  Material and experiments

The investigations were performed in the shielded laboratory 
at the federal institute for occupational safety and Health in 
Berlin. EEG traces were captured by 25 electrodes, which 
were arranged according to the 10–20 system, with reference 
to Cz and at a sample rate of 500 Hz. The recorded signal 
lengths varied between 1.5 and 20 min. The sample comprised 
57 people (aged between 30 and 62 years, with 31 females 
and 26 males). During the experiment, the participants had to 
solve cognitive tasks with varying degrees of difficulty. We 
described the details of the experiment in a previous study [9].

To ensure a thorough validation, we also tested our 
system with two additional data sets: one similar to the setup 
described above, and another obtained with a substantially 
different electrode configuration and experimental design 
(www.baua.de/de/Forschung/Forschungsprojekte/f2247.
html?nn=2799254). Table 1 provides an overview of the data 
sets used.

All of the studies were approved by the local review board 
at our institution and the experiments were conducted in 
accordance with the Declaration of Helsinki. All of the pro-
cedures were conducted with the adequate understanding and 
written consent of the subjects.

3.  Methods

3.1.  Principle

The pipeline for EEG artifact elimination comprises three 
main modules: pre-processing, feature generation, and 
classification.

Filtering and ICA are performed in the pre-processing 
module. We applied a band pass filter in the order of 100 to 
the raw signals. The cut-off frequencies were 0.5 and 40 Hz. 
We then decomposed the multi-channel EEG into ICs using 
the Infomax algorithm [2, 12]. All of the ICs (equal to the 
number of channels) were used in the following computations.

We should note one of the main concepts in our method, 
which is the interpolation of the ICA mixing matrix onto a 
×51 63 fixed-size grid using the inverse distance method 

described by [13]. This step aims to generate images with 
identical dimensions despite any original differences in the 
number of EEG channels and the positions of the electrodes. 
A different number of electrodes would actually result in vari-
able column lengths of the mixing matrix and hence require 
retraining of the classifier. The projection of ICs onto the same 
grid allows the classification of the topoplot images without 
retraining the classifier in any further investigations using dif-
ferent number of channels and positions. Thus, our classifier 
always has the same number of inputs (i.e. pixel in the image) 
and classifies the image patterns of the topoplots.

In the next step, the topoplot images obtained together 
with the IC power spectra are used as inputs for the feature 
generation module. This module comprises image processing 
algorithms for feature extraction from the topoplots to obtain 
so-called feature images with the same size as the original 
topoplot images.

Figure 1.  Typical topoplot image patterns of different artifact types.
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In order to emphasize the key specific properties of the 
topoplots for analysis, we used six preselected operators. 
Thus, by applying HSO, range filtering, and LHG, we pre-
served the extent and strength of the gradients in the original 
topoplot in the feature image. The feature images obtained 
from the second layer of 3D LBP characterized the texture. 
Finally, the Gaussian curvature calculation yielded feature 
images containing information about geometrical forms. 
Furthermore, we used the raw topoplots in our analysis in 
order to benchmark our findings.

Starting with the same topoplot image (e.g. the topoplot 
at the top left in figure 2) each operator computed a different 
feature image, examples of which are illustrated in figure 2. 
Hence, one of our main aims was to define the most suitable 
operator for discriminating between the topoplot patterns 
according to their type.

Our previous results [9] only indicated a weak influence of 
downsampling the feature images on the system’s accuracy. 
Therefore, we used feature images with 372 pixels instead of 
the original 3213 in order to optimize the computational time.

Subsequently, we combined the feature images with the 
frequency bands obtained from the IC’s power spectrum into 
feature vectors and used them as inputs for the classification 
module. The classification module only required the feature 
images and IC frequency bands as inputs to produce the clas-
sification result, which comprised either an artifact or EEG 
component as the output. Artifact components were discarded 
and EEG components were projected back, thereby recon-
structing an artifact-free signal.

3.2.  Classification

3.2.1.  Classification methods.  In general, machine learning 
can be described as the generation of knowledge from experi-
ence by a system. This means that the system receives exam-
ples of an actual situation and rather than merely memorizing 
them, it determines common principles among examples from 
the same class. After a training phase, the system is able to 
generalize and assign new events to the predefined classes.

In addition to using linear discriminant analysis (LDA) 
for selecting the most suitable features [9], we employed 
logistic regression (LgR) as a binary classifier as well as sup-
port vector machines (SVMs) and artificial neuronal networks 
(ANNs), which were implemented and trained as follows.

LgR.  LgR is similar to LDA a linear classifier, i.e. it identifies 
a linear decision boundary between the data. In LgR, the 
outliers are only given a small loading, and thus they affect 
the rating little. Hence, LgR is assumed to be a more general 
approach. By contrast, LDA includes outliers when comput-
ing the covariance matrix, which makes this method more 

precise because of the additional information, but this also 
reduces its robustness against large outliers.

SVMs.  SVMs are used widely as so-called large margin clas-
sifiers. A characteristic of SVMs is that they attempt to classify 
objects into classes with the maximum possible object-free 
area around them. Each object is represented by a vector in a 
vector space. An SVM searches for a hyperplane that separates 
the classes in this space. Depending on the SVM kernel used, 
the data separation process can be designed as linear or non-
linear. In nonlinear separation, the vector space and its objects 
are transformed into a higher dimensional space, which allows 
linear separation using a plane. After changing back to a lower 
dimensional space, the linear hyperplane becomes nonlinear 
and it can even be discontinuous [14, 15]. The preferred non-
linear kernel is the Gaussian radial basis function, which we 
used in this study.

ANNs.  ANNs were first proposed in the early 1940s and they 
are very valuable in applications where there is little knowl-
edge of the problem. The architecture of an ANN is defined 
by the number of layers, the number of particular neurons 
(nodes), and how they are connected with each other (edges). 
ANNs contain input and output layers as well as one or sev-
eral hidden layers. The number of hidden layers is crucial for 
the network’s structure. In this study, the ANN comprised a 
one-layer network trained by back-propagation [16] using 100 
iterations.

3.2.2.  Approach for classifier selection.  A number of steps 
are required to select a classifier. Firstly, it is necessary to iden-
tify a suitable subset of features, before training the different 

Table 1.  Data sets used for classifier training and testing (arranged according to the 10–20 system).

Subjects Tasks Electrodes Reference Sample rate

Data set 1 (training, testing) 57 11 25 Cz 500 Hz
Data set 2 (testing) 12 12 25 Cz 500 Hz
Data set 3 (testing) 10 1 63 FCz 500 Hz

Figure 2.  Examples of the feature images used. All of the feature 
images were generated from the top left topoplot image using 
several operators (horizontal Sobel operator (HSO), large horizontal 
gradient operator (LHG), range filter, second layer of the 3D local 
binary pattern (3D LBP (2nd)), and Gaussian curvature).

J. Neural Eng. 14 (2017) 046004
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classifiers, and then comparing and testing them to select the 
classifier with the best performance (figure 3).

Six suitable feature images were selected using LDA, as 
described in detail by [9]. Thus, LDA-based identification 
of the best feature images employed a data volume com-
prising 625 sets (subjects  ×  tasks) with 25 topoplots in each 
set. Table 2 provides an overview of the data used. The six 
selected feature images (HSO, LHG, range filter, 3D LBP 
(2nd), Gaussian curvature, and raw topoplots) achieved an 
LDA accuracy rate of around 85%.

However, experts do not rely only on the patterns in the 
topoplots because they also consider the frequency bands of 
IC activation when making their judgments. Hence, it was 
necessary for the fully automated artifact elimination method 
to simulate the behavior of experts by integrating the IC power 
spectra in the classification process. For the features described 
in the following, we always refer to the feature images com-
bined with their IC power spectra.

The selection of a classifier is divided into three steps:  
(1) classifier training and identifying the optimal parameters, 
(2) classifier comparison, and (3) classifier testing. In step 1, 
we used 60% of data set 1, and we used 20% in each of steps 2 
and 3. The results obtained are described in the next section.

4.  Results

We evaluated our artifact removal algorithm based on a thor-
ough inspection of the classification results and the execu-
tion time. The classification results satisfied the standard for 
assessing classifier performance, thereby obtaining a good 
quality signal, but the execution time determines the real-time 
feasibility of the algorithm.

4.1.  Classifier training

From among 60% of the subjects, we randomly selected a subset 
of 80% for training (determining the most suitable parameters) 
each classifier and 20% for testing. Step 1 involved tuning the 
classifiers. For each classification method, each feature and 

each parameter were subjected to a cross-validation ( ×5 4). 
The average results obtained are presented in figure 4.

Based on the curves obtained, we empirically selected 
the best parameter for each classification method and feature 
(table 3). The classifier tuning results are listed in table 4.

4.2.  Comparison of classifiers

Based on the results obtained in step 1, the accuracy rates for 
all features were worse using LDA than the other classifica-
tion methods (table 4), so we removed it from the computa-
tions in step 2.

The results obtained by LgR, SVM, and ANN for each feature 
are presented in table 5. The best recognition result of 95.85% 
was achieved using the range images combined with ANN, fol-
lowed by the range images with SVM (94.04%), and the combi-
nation of ANN with the second layer of the 3D LBP (94.07%). 
LgR was particularly robust where the recognition rates for all 
features were between 92.7% and 93.4%. Thus, we hypothesize 
that the data including outliers should be given a smaller loading 
during training so they had less influence on the rating.

Thus, range images and classification with SVM and ANN 
were the most suitable for automated artifact elimination.

4.3.  Classifier testing

In step 3, we tested the selected classifiers (SVM and ANN) 
with the selected feature (range image) using the remaining 
20% of data set 1. We also evaluated our method in further 
tests with data set 2 and data set 3. To determine the real-time 
feasibility of the algorithm, we examined the execution time 
for each module. The results are described in the following.

Figure 3.  Approach for classifier selection.

Table 2.  Amounts of data used for selecting suitable feature images 
based on LDA.

Proportion of 
total set size

Number 
of sets

Number of 
feature images

Training 60% 375 9375
Testing 40% 250 6250

J. Neural Eng. 14 (2017) 046004
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4.3.1.  Recognition rates.  In step 3, the classifier results were 
compared with the ratings given by the expert, whose labels 
were used to train the classifiers (expert 1), but also with the 
ratings given by two additional experts (expert 2 and expert 3).  

The test results and the agreement among the experts are 
presented in table  6. As expected, the agreement between 
the machine ratings and the ratings given by expert 1 was 
high. The ANN algorithm achieved the best performance of 

Figure 4.  Recognition rates for the empirical selection of the optimal parameters with each classification method and feature.

J. Neural Eng. 14 (2017) 046004
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95.42% compared with expert 3 and very good agreement 
of over 90% with expert 2. The level of agreement between 
the machine and expert 2 has comparatively more weight 
considering this experts agreement of 92.84% to expert 1 
and 90.89% to expert 3. Furthermore, there was a small but 
consistent advantage of ANN compared with SVM.

Furthermore, we split the results obtained by our classifiers 
based on the visual determinations by expert 1 into four dif-
ferent artifact groups: eye blink, horizontal eye movements, 
heartbeat, and others. For convenience, the experts did not 
differentiate between impedance and muscle activity. Table 7 
shows the classifier performance for each group, which shows 
that the performance was similar across groups, i.e. the result 
of our method is not dependent on the artifact type

To test the system with data set 2, expert 3 visually 
inspected and classified the ICs. The agreement rates between 
the machine and expert are listed in table  8. Both classi-
fiers achieved recognition rates over 90%. Again, ANN was 
superior to the SVM with a recognition rate of 95.31%.

Finally, all three experts visually inspected and classified the 
ICs in data set 3. According to the results obtained using data 
set 2, we expected better performance with the trained ANN 
classifier. The agreement rates between the machine and experts 
are listed in table 9. The ANN achieved the best recognition rate 
of 91.43%. The agreement among the experts varied between 
90.00% and 93.97%. The recognition rates using the SVM clas-
sifier for range images varied between 81.43% and 86.19%.

4.3.2.  Execution time.  To determine the feasible real-time 
applicability of the proposed algorithm, we tested our sys-
tem on an intel core i5-3320M processor (2.6 GHz) with 
8  GB DDR3-SDRAM ( ×2 4 GB). The input signal was a 
25 channel EEG with a length of 94.34 s (500 Hz sample 
rate). We selected a short signal because the computational 
time required for ICA depends on the signal length and it 
is the most time-consuming operation in the processing 
pipeline. Hence, the system’s execution time can be viewed 
as a bottleneck. In addition, it is necessary to consider that 
identifying N components requires more than kN2 data sam-
ple points (N denotes the number of EEG channels, N2 is the 
number of weights in the ICA unmixing matrix, and k is a 
multiplier that increases with the number of channels).

Hence, in our study, the pre-processing module required 
approximately 5 s for filtering, performing ICA, and gen-
erating a topoplot. The computation of one feature image 

Table 3.  Optimal parameter for each classification method and 
feature (N: number of eigenvectors, λ: regularization parameter,  
C: SVM regularization, σ: kernel width, and units: number of 
neurons in the hidden layer).

IC power spectra  
&

LDA 
(N-1)

LgR  
(λ)

SVM 
(C/σ)

ANN  
(λ/units)

Topoplots 376 2.5 · 10−3 1.3 / 1.5 1.8 · 10−2 
/ 10

3D LBP (2nd) 376 2.5 · 10−3 2.5 / 4.5 1.8 · 10−2 
/ 10

LHG 376 2.5 · 10−3 1.5 / 2.8 2.5 · 10−3 / 3
HSO 376 2.2 · 10−1 2.6 / 0.8 5.5 · 10−4 / 4
Range filter 376 1.8 · 10−2 3.5 / 1.1 5.0 · 10−2 / 3
Gaussian curvature 376 2.7 1.5 / 0.4 2.7 / 3

Table 4.  Mean recognition rate (%) and standard deviation  
(in parentheses) for each feature obtained by classifier tuning  
to determine the optimal parameters.

IC power 
spectra & LDA LgR SVM ANN

Topoplots 86.9(1.1) 92.3(1.3) 90.4(0.8) 93.2(1.0)
3D LBP 
(2nd)

84.3(1.4) 92.9(0.8) 90.8(1.5) 94.1(0.7)

LHG 89.3(1.0) 92.3(1.0) 93.3(1.1) 92.8(1.2)
HSO 89.7(1.1) 92.2(0.8) 93.4(0.7) 92.7(0.9)
Range filter 90.9(1.3) 92.8(1.1) 94.6(1.0) 95.5(0.9)
Gaussian 
curvature

90.5(0.7) 92.5(1.3) 93.7(1.2) 93.1(0.9)

Table 5.  Validation results (%) for the classifiers and each feature.

IC power spectra & LgR SVM ANN

Topoplots 93.13 89.53 92.55
3D LBP (2nd) 92.65 89.13 94.07
LHG 92.91 92.62 92.76
HSO 93.16 93.78 92.91
Range filter 93.02 94.04 95.85
Gaussian curvature 93.42 93.31 93.45

Table 6.  Agreement (%) among the experts as well as between the 
experts and the two classifiers for data set 1.

SVM ANN Expert 1 Expert 2 Expert 3

Expert 1 93.51 95.20 — 92.84 95.15
Expert 2 90.62 91.71 92.84 — 90.89
Expert 3 92.87 95.42 95.15 90.89 —

Table 7.  Agreement (%) between an expert and two classifiers 
regarding different artifact types in data set 1.

SVM ANN

Eye blink 100 100
Horizontal eye movements 94.81 93.51
Heartbeat 96.7 93.51
Others 96.53 90.68
Neural signal 96.31 98.1

Table 8.  Agreement (%) between an expert and two classifiers 
using data set 2.

SVM ANN

Expert 93.25 95.31

Table 9.  Agreement (%) among the experts as well as between 
experts and the two classifiers for data set 3 (different electrode 
numbers and configurations).

SVM ANN Expert 1 Expert 2 Expert 3

Expert 1 86.19 91.43 — 93.97 93.81
Expert 2 81.43 86.35 93.97 — 90.00
Expert 3 85.40 90.63 93.81 90.00 —

J. Neural Eng. 14 (2017) 046004
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(here range filtering) and the corresponding IC power spectra 
required only 15.7 ms. The classification of one component 
using the SVM and ANN required less than 1 ms. Table 10 
shows the execution time for each module, which demon-
strates that the system is real-time capable. System training 
can be performed offline so it was not considered in the real-
time performance evaluation.

5.  Conclusions

In this study, we developed a new method for artifact elimina-
tion, which can reject any type of artifact from EEG traces. 
Our method is better than the currently available methods 
because it is not restricted to certain types of artifact,  
e.g. blinks, and it can run automatically without any user 
interaction. Furthermore, it is not limited to specific num-
bers and positions for the electrodes, and the system needs 
to be trained only once. Hence, it behaves similarly to human 
experts during the rating process of topoplots that is also inde-
pendent of the electrode configuration because of the similar 
image patterns in the topoplots of each artifact type.

However, ICA does not require a specific montage, and it 
only demands the independence and linear co-dependence of 
the channels, but the localization and thus the topoplot patterns 
may be more accurate when the electrode coverage is more uni-
form [17]. This was obvious when experts were asked to rate 
topoplots obtained from a small number of electrodes or based 
asymmetric electrode configurations. The classification process 
by humans and machine lacked clarity. Thus, there may be more 
appropriate methods for artifact rejection with a smaller number 
of electrodes or asymmetric head coverage, e.g. [18–20].

Our novel approach for real-time and fully automated arti-
fact elimination achieved recognition rates between 89.13% 
and 95.20%, where the best recognition performance was 
obtained for features derived from range images and IC power 
spectra combined with ANN.

To the best of our knowledge, no other method has com-
parable performance. Finally, in order to provide a relative 
performance rating for our new approach, we benchmarked 
our algorithm against the existing removal methods called 
ADJUST [10] and CORRMAP [11], which are implemented 
in EEGLAB.

We tested both methods with 250 ICs. CORRMAP only 
focuses on eye blinks and lateral eye movements, as mentioned 
by the authors [11], but it can be used in an automatic mode. 
The recognition rate obtained indicated 62% agreement with 
the ratings of our experts. ADJUST yielded an accuracy rate 

of 57.15% compared with the ratings of our experts. It may 
be assumed that these percentages correspond roughly to the 
percentage of eye blinks and lateral eye movements among the 
total artifacts.

Our proposed method could be improved by including 
further experts. For example, it might benefit from a crowd-
sourced approach to collecting more IC labels for training the 
classifier more precisely. Recently, the swartz center for com-
putational neuroscience launched an internet project asking 
researchers to label as many components as possible for a 
machine learning method. Including this information in our 
method could lead to more accurate results.

The real-time feasibility of our method is an additional 
advantage. The time-consuming computation of the ICA, 
which is the bottleneck in our system in terms of the execution 
time, could be improved by considering recent developments 
in online ICA [21–23].

Acknowledgments

We would like to thank Ms Xenija Weißbecker-Klaus, Mr 
Robert Sonnenberg, Dr Sergei Schapkin, and Ms Marion 
Freyer for conducting the laboratory experiments and 
acquiring the data. Furthermore, we would like to thank Ms 
Marion Freyer and Ms Friederice Schröder for daily opera-
tional support, Ms Dagmar Rahim for proofreading, and Dr 
Gabriele Freude for her general support.

More information about the project that acquired our EEG data 
can be found at www.baua.de/de/Forschung/Forschungsprojekte/
f2312.html?nn=2799254.

Author contributions

TR initiated the project and was responsible for the overall 
conception of the method. JS provided computational support 
for signal processing, classifier training, and testing. The study 
was supervised by TR. Data analysis and interpretation were 
performed by TR, OH, and BM. The manuscript was written 
by TR. Final critical editing was performed by OH and BM

References

	 [1]	 Jung T-P, Makeig S, Humphries C, Lee T-W, McKeown M J, 
Iragui V and Sejnowski T J 2000 Removing 
electroencephalographic artifacts by blind source separation 
Psychophysiol. 37 163–78

	 [2]	 Makeig S, Bell A J, Jung T P and Sejnowski T J 
1996 Independent component analysis of 
electroencephalographic data Advances in Neural 
Information Processing Systems (Cambridge, MA: MIT 
Press) pp 145–51

	 [3]	 Weerts T C and Lang P J 1973 The effects of eye fixation and 
stimulus and response location on the contingent negative 
variation (CNV) Biol. Psychol. 1 1–19

	 [4]	 Oster P J and Stern J A 1980 Measurement of eye movement 
electrooculography Techniques in Psychophysiology ed 
I Matin and P H Venables (New York: Wiley) pp 275–309

	 [5]	 Peters J F 1967 Surface electrical fields generated by eye 
movements Am. J. EEG Technol. 7 27–40

Table 10.  Execution times for the processing pipeline.

Pre-processing Band pass filter 0.164 s
ICA 4.731 s

Feature generation Topoplot 0.121 s
Range filter 0.002 s
Feature postprocessing 0.000 07 s
IC power spectra 0.013 s

Classification
(online testing)

SVM—range image 5.6 · 10−4 s
ANN—range image 9.6 · 10−6 s

J. Neural Eng. 14 (2017) 046004

http://www.baua.de/de/Forschung/Forschungsprojekte/f2312.html﻿?﻿nn﻿=﻿2799254
http://www.baua.de/de/Forschung/Forschungsprojekte/f2312.html﻿?﻿nn﻿=﻿2799254
https://doi.org/10.1111/1469-8986.3720163
https://doi.org/10.1111/1469-8986.3720163
https://doi.org/10.1111/1469-8986.3720163
https://doi.org/10.1016/0301-0511(73)90010-0
https://doi.org/10.1016/0301-0511(73)90010-0
https://doi.org/10.1016/0301-0511(73)90010-0


T Radüntz et al

8

	 [6]	 Gao J F, Yang Y, Lin P, Wang P and Zheng C X 2010 
Automatic removal of eye-movement and blink artifacts 
from EEG signals Brain Topogr. 23 105–14

	 [7]	 Gao J, Lin P, Yang Y, Wang P and Zheng C 2010 Real-time 
removal of ocular artifacts from EEG based on independent 
component analysis and manifold learning Neural Comput. 
Appl. 19 1217–26

	 [8]	 Fatourechi M, Bashashati A, Ward R K and Birch G E 2007 
EMG and EOG artifacts in brain computer interface 
systems: a survey Clin. Neurophysiol. 118 480–94

	 [9]	 Radüntz T, Scouten J, Hochmuth O and Meffert B 2015 
EEG artifact elimination by extraction of ICA-component 
features using image processing algorithms J. Neurosci. 
Methods 243 84–93

	[10]	 Mognon A, Jovicich J, Bruzzone L and Buiatti M 2011 
ADJUST: An automatic EEG artifact detector based on  
the joint use of spatial and temporal features Psychophysiol. 
48 229–40

	[11]	 Viola F C, Thorne J, Edmonds B, Schneider T, Eichele T 
and Debener S 2009 Semi-automatic identification of 
independent components representing EEG artifact  
Clin. Neurophysiol. 120 868–77

	[12]	 Delorme A and Makeig S 2004 EEGLAB: an open source 
toolbox for analysis of single-trial EEG dynamics  
J. Neurosci. Methods 134 9–21

	[13]	 Sandwell D T 1987 Biharmonic spline interpolation of  
GEOS-3 and SEASAT altimeter data Geophys. Res. Lett. 
14 139–42

	[14]	 Burges C J C 1998 A tutorial on support vector machines  
for pattern recognition Data Min. Knowl. Discovery 
2 121–67

	[15]	 Bishop C M 2006 Pattern recognition and machine learning 
Information Science and Statistics ed M Jordan et al 
(Berlin: Springer) ISBN: 978-0-387-31073-2

	[16]	 Rumelhart D E, Hinton G E and Williams R J 1986 Learning 
representations by back-propagating errors Nature 323 533–6

	[17]	 Akalin Acar Z and Makeig S 2013 Effects of forward model 
errors on EEG source localization Brain Topogr. 26 378–96

	[18]	 Graichen U, Eichardt R, Fiedler P, Strohmeier D, Zanow F and 
Haueisen J 2015 SPHARA—a generalized spatial fourier 
analysis for multi-sensor systems with non-uniformly 
arranged sensors: application to EEG PLoS One 10 1–22

	[19]	 Gao J, Yang Y, Sun J and Yu G 2010 Automatic removal of 
various artifacts from EEG signals using combined methods 
J. Clin. Neurophysiol. 27 312–20

	[20]	 Gao J, Zheng C and Wang P 2010 Online removal of muscle 
artifact from electroencephalogram signals based on 
canonical correlation analysis Clin. EEG Neurosci. 41 53–9

	[21]	 Pion-Tonachini L, Hsu S H, Makeig S, Jung T P and 
Cauwenberghs G 2015 Real-time EEG source-mapping 
toolbox (REST): online ICA and source localization 37th 
Annual Int. Conf. of the IEEE Engineering in Medicine and 
Biology Society pp 4114–7

	[22]	 Hsu S H, Mullen T, Jung T P and Cauwenberghs G 2014 
Online recursive independent component analysis for real-
time source separation of high-density EEG 36th Annual 
Int. Conf. of the IEEE Engineering in Medicine and Biology 
Society pp 3845–8

	[23]	 Akhtar M T, Jung T P, Makeig S and Cauwenberghs G 2012 
Recursive independent component analysis for online blind 
source separation IEEE Int. Symp. on Circuits and Systems 
pp 2813–6

J. Neural Eng. 14 (2017) 046004

https://doi.org/10.1007/s10548-009-0131-4
https://doi.org/10.1007/s10548-009-0131-4
https://doi.org/10.1007/s10548-009-0131-4
https://doi.org/10.1007/s00521-010-0370-z
https://doi.org/10.1007/s00521-010-0370-z
https://doi.org/10.1007/s00521-010-0370-z
https://doi.org/10.1016/j.clinph.2006.10.019
https://doi.org/10.1016/j.clinph.2006.10.019
https://doi.org/10.1016/j.clinph.2006.10.019
https://doi.org/10.1016/j.jneumeth.2015.01.030
https://doi.org/10.1016/j.jneumeth.2015.01.030
https://doi.org/10.1016/j.jneumeth.2015.01.030
https://doi.org/10.1111/j.1469-8986.2010.01061.x
https://doi.org/10.1111/j.1469-8986.2010.01061.x
https://doi.org/10.1111/j.1469-8986.2010.01061.x
https://doi.org/10.1016/j.clinph.2009.01.015
https://doi.org/10.1016/j.clinph.2009.01.015
https://doi.org/10.1016/j.clinph.2009.01.015
https://doi.org/10.1016/j.jneumeth.2003.10.009
https://doi.org/10.1016/j.jneumeth.2003.10.009
https://doi.org/10.1016/j.jneumeth.2003.10.009
https://doi.org/10.1029/GL014i002p00139
https://doi.org/10.1029/GL014i002p00139
https://doi.org/10.1029/GL014i002p00139
https://doi.org/10.1023/A:1009715923555
https://doi.org/10.1023/A:1009715923555
https://doi.org/10.1023/A:1009715923555
https://doi.org/10.1038/323533a0
https://doi.org/10.1038/323533a0
https://doi.org/10.1038/323533a0
https://doi.org/10.1007/s10548-012-0274-6
https://doi.org/10.1007/s10548-012-0274-6
https://doi.org/10.1007/s10548-012-0274-6
https://doi.org/10.1371/journal.pone.0121741
https://doi.org/10.1371/journal.pone.0121741
https://doi.org/10.1371/journal.pone.0121741
https://doi.org/10.1097/WNP.0b013e3181f534f4
https://doi.org/10.1097/WNP.0b013e3181f534f4
https://doi.org/10.1097/WNP.0b013e3181f534f4
https://doi.org/10.1177/155005941004100111
https://doi.org/10.1177/155005941004100111
https://doi.org/10.1177/155005941004100111
https://doi.org/10.1109/EMBC.2015.7319299
https://doi.org/10.1109/EMBC.2015.7319299
https://doi.org/10.1109/EMBC.2014.6944462
https://doi.org/10.1109/EMBC.2014.6944462
https://doi.org/10.1109/ISCAS.2012.6271896
https://doi.org/10.1109/ISCAS.2012.6271896

